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Abstract 

Given that autocorrelation tests do not perform well in the presence of 
heteroskedasticity and in variance-break cases, we present three modified weighted 
variance ratio tests of autocorrelation. The numerical results show that the proposed 
tests perform better for small samples. They provide a better approximation of 
asymptotic distributions and are more powerful when the lag length is mis-specified. 
The study also applies these tests to data on the daily returns of two companies listed 
on the Pakistan Stock Exchange. 
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1. Introduction 

Testing for autocorrelation in data is an important step in building a 
linear regression model. While the literature provides many tests for this 
purpose, the Breusch–Godfrey (BG) Lagrange multiplier (LM) test 
suggested by Breusch (1978) and Godfrey (1978) is the most popular among 
practitioners. The objective of these tests of misspecification is to obtain 
correct inferences about autocorrelation. Ignoring autocorrelation in data 
can lead to wrong conclusions when testing the significance of the regression 
parameters of central interest.  

Generally, the BG-LM test is used without considering the presence 
of heteroskedasticity. Several studies investigate the performance of 
autocorrelation tests in the presence of conditional heteroskedasticity, 
including Wooldridge (1991), Guo and Phillips (2001) and Mantalos and 
Shukur (2005), among others. More recently, Jeong and Kang (2012) and 
Hyun et al. (2010) have used simulations to show that the BG-LM test can 
generate substantial size distortions in the presence of unconditional 
heteroskedasticity and misleading results in the case of a variance break.  
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Shim et al. (2006) propose a modified LM test based on feasible 
generalized least squares (FGLS) and a revised variance ratio (VR) test for 
autocorrelation as an alternative to the BG LM test in the presence of 
variance breaks. Importantly, the FGLS-based LM test is not robust to the 
type of heteroskedasticity. Moreover, if the heteroskedasticity is not due to 
a variance break or if no prior information on the breakpoints is available, 
then the FGLS-based test gives invalid results.  

Jeong and Kang (2012) argue that the VR test proposed by Shim et al. 
(2006), while robust to the type of heteroskedasticity, does not work well for 
finite samples. They suggest a modified VR test and wild bootstrap version 
of different VR tests in the presence of unconditional heteroskedasticity. 
Mun et al. (2014) propose a modified LM test for autocorrelation when there 
is a break in variance. Their simulation results show that the proposed test 
has good size and power properties when applied to small samples and is 
robust to variance-break heteroskedasticity. 

This study focuses on the low power of these tests under a mis-
specified lag length, especially for small samples. We propose three new VR 
tests by modifying the weights used in their standard versions. The 
simulation results show that these modified tests perform reasonably well 
for both static and dynamic regression models compared to existing tests. 
Moreover, they are robust to the presence of heteroskedasticity, have good 
size properties and remain more powerful even in variance-break cases. 

The rest of the paper is organized as follows. Section 2 defines the 
model and VR tests used. The proposed modified VR tests are presented 
in Section 3. The Monte Carlo simulation results are given in Sections 4 and 
5. Section 6 applies these tests to real-life contexts and Section 7 concludes 
the study. 

2. Model and VR Test 

We consider the following linear regression model: 

𝑦𝑖 = 𝑋𝑖
𝑡𝛽 + 𝑢𝑖, 𝑖 = 1, 2, … , 𝑛 (1) 

where 𝑦𝑖 is the response variable, 𝑋𝑖 is the ith row of the matrix X of order (n 
× (k + 1)), n is the sample size and k is the number of parameters. 𝛽 is a vector 
of parameters of order ((k + 1) × 1) and E(𝑢𝑖) = 0 for all i. We are interested 
in whether 𝑢𝑖 is serially uncorrelated. The BG-LM test for autocorrelation is 
reliable when the disturbance term 𝑢𝑖 has a constant variance, that is, 
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homoskedastic errors, but can be misleading in the case of heteroskedastic 
errors. To consider this scenario, we define the error term 𝑢𝑖 in model (1) as 

𝑢𝑖 = 𝜀𝑖𝜂𝑖 (2) 

where 𝜀𝑖 is a heteroskedasticity factor used to create different types of 
heteroskedasticity, 𝜂𝑖 is white noise with a zero mean and unit variance, and 
𝐸(𝜂𝑖𝜂𝑗) = 0 for i ≠ j. The factor 𝜀𝑖 will result in multiplicative 

heteroskedasticity if it is a function of a pre-determined variable. In model 
(2), if we define the factor 𝜀𝑖 in the form of a categorical variable, then it will 
produce multiple variance-break cases as follows: 

2 2 2

1 1 2 1 2 11[ ] 1[ ] 1[ ]i s si n n i n i n             
 (3) 

where 1[.] is the indicator function and 𝜏 ∈ (0, 1) is the break timing. Shim 
et al. (2006) and Hyun et al. (2010) study the simple variance break by 
considering a single variance breakpoint. In this case, the variance of 𝑢𝑖, that 

is, σ𝑖
2, is σ1

2 for 𝑖 ≤ 𝜏1𝑛 and σ2
2 for 𝑖 > 𝜏1𝑛. Similarly, when we have s breaks, 

there will be (s + 1) variances in 𝜀𝑖. 

The VR test is designed to identify the presence of serial correlation 
in a time series by investigating whether the variance of the q-period return 
is exactly q times larger than the variance of the one-period return. While the 
literature provides different versions of the VR test, in its simplest form the 
test compares the variance of the q-period return and q times the variance of 
the one-period return, that is: 

𝑉𝑅(𝑞) =
𝜎̂(𝑞)2

𝑞𝜎̂(1)2 − 1 (4) 

where q > 1, 𝜎̂(𝑞)2 = [
𝑛

𝑞(𝑛−𝑞+1)(𝑛−𝑞)
] ∑ 𝑢𝑖(𝑞)2𝑛

𝑖=𝑞 , 𝜎̂(1)2 = [
1

𝑛−𝑘
] ∑ 𝑢𝑖

𝑛
𝑖=1

2
, 

𝑢𝑖(𝑞) = ∑ 𝑢̂𝑖−𝑗
𝑞−1
𝑗=0  and 𝑢̂𝑖 = 𝑦𝑖 − 𝑋𝑖𝛽̂, where 𝛽̂ is the estimator of 𝛽. If the 

errors are serially uncorrelated, then the q-period return variance will be 
precisely q times the variance of the single-period return. In this case, the 
value of VR(q) will be near 0.  

Lo and MacKinlay (1988) show that the VR(q) given in model (4) can 
be written as 

𝑉𝑅(𝑞) = 2 (1 −
1

𝑞
) 𝜌(1) + 2 (1 −

2

𝑞
) 𝜌(2) + ⋯ + 2𝜌(𝑞 − 1) (5) 
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𝑉𝑅(𝑞) ≈ 2 ∑ (1 −
ℎ

𝑞
)

𝑞−1
ℎ=1 𝜌(ℎ) (6) 

where q is the lag length and 𝜌(ℎ) = ∑ 𝑢̂𝑖𝑢̂𝑖−ℎ/𝑛
𝑖=ℎ+1 ∑ 𝑢̂𝑖

2𝑛
𝑖=1  is the 

autocorrelation coefficient estimator at lag h. They argue that the VR(q) test 
has the following limiting distribution under the null hypothesis: 

2(2 1)( 1)
( )~ 0, .

3
( )

a q q
nq VR q N

q

 

 (7) 

Model (5) describes the computation of variance ratios for an 
aggregate value q. We can see that these are a linear combination of the first 
(q − 1) autocorrelation coefficient estimators with mathematically declining 
weights. When q = 2, the VR(q) value will be approximately the first-order 
autocorrelation coefficient.  

Jeong and Kang (2012) argue that the standard VR(q) test given in 
models (4) and (6) may be misleading in the presence of negative 
autocorrelation among the errors. For example, for q = 3, the VR(q) 
approaches 0 if Σ𝑢̂𝑖𝑢̂𝑖−2 = Σ𝑢̂𝑖𝑢̂𝑖−1 = Σ𝑢̂𝑖−2𝑢̂𝑖−1 = 0, which implies that the 
errors have no serial correlation. When we have serially correlated errors, 
the VR(q) statistic will still approach 0, but in this case, Σ𝑢̂𝑖𝑢̂𝑖−2 = −Σ𝑢̂𝑖𝑢̂𝑖−1 −
Σ𝑢̂𝑖−2𝑢̂𝑖−1 ≠ 0.  

Pagan (1984, 1986) shows that, while the presence of negative 
autocorrelation might not lead the value of VR(q) towards 0, it can affect the 
power of the test. To resolve this, Jeong and Kang (2012) suggest using the 
quadratic version of the VR(q) test, QVR(q), which is defined as: 

𝑄𝑉𝑅(𝑞) = ∑ (1 −
ℎ

𝑞
)

𝑞−1
ℎ=1 𝜌(ℎ)2 (8) 

Here, Jeong and Kang (2012) employ the bootstrap distribution, 
indicating that the asymptotic distribution for it was not derived. 

3. Modified VR Tests 

This section proposes three new tests: WVR, WQVR and WAVR. The 
first two are modified versions of the VR and QVR tests. The third test 
suggests using absolute autocorrelation, given that (as discussed in Section 
2) the presence of negative autocorrelation adversely affects the performance 
of VR tests. Unlike the QVR test, this uses the original magnitude of 



Modified Variance Ratio Test for Autocorrelation in the Presence of Heteroskedasticity 5 

autocorrelation while addressing the problem of negative autocorrelation. 
The new tests are defined as follows: 

𝑊𝑉𝑅(𝑞) = 𝑝 ∑ 𝑊ℎ𝜌(ℎ)
𝑞−1
ℎ=1  (9) 

𝑊𝑄𝑉𝑅(𝑞) = 𝑝 ∑ 𝑊ℎ𝜌(ℎ)2𝑞−1
ℎ=1  (10) 

𝑊𝐴𝑉𝑅(𝑞) = 𝑝 ∑ 𝑊ℎ|𝜌(ℎ)|𝑞−1
ℎ=1  (11) 

where p = q – 1, 𝑊ℎ = 𝛼(1 − 𝛼)ℎ−1 and 0 < 𝛼 < 1. The rationale for using 
the 𝑊ℎ term is that it enables one to simultaneously control the lag length 
and assign geometrically decaying weights to the autocorrelations. The 
parameter 𝛼 is user-defined but based on empirical evidence, we propose 
that 𝛼 = 0.7. For these suggested tests, we do not attempt to derive their 
asymptotic distribution since we employ the wild bootstrap procedure for 
these statistics. 

4. Numerical Results 

This section provides numerical results for the empirical size and 
power of the suggested VR tests, including a comparison with the existing 
tests. We consider two types of heteroskedasticity: multiplicative 
heteroskedasticity and the variance-break case. In both cases, we use static l 
and dynamic regression models. In comparing our results with those 
reported in the literature, we follow the simulation design used by Jeong and 
Kang (2012). 

The static regression model is defined as: 

𝑦𝑖 = 𝛼0 + 𝛼1𝑋𝑖 + 𝑢𝑖, 𝑖 = 1, 2, … , 𝑛 (12) 

where the predictor 𝑋𝑖~𝑁(0, 1) and the values of 𝛼0 and 𝛼1 are set to 1. 

The dynamic regression model is given as: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑦𝑖−1 + 𝛽2𝑋𝑖 + 𝛽3𝑋𝑖−1 + 𝑢𝑖, 𝑖 = 1, 2, … , 𝑛 (13) 

The value of 𝛽1 is set to 0.5 to avoid the complexity of 
nonstationarity, while the remaining parameters are set to 1. To remove the 
effect of initial values, we have burned out the first 100 simulated 
observations.  
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To compute empirical size, we define the serially independent errors 
of the regression model of multiplicative heteroskedasticity as follows: 

𝑢𝑖 = 𝜀𝑖𝜂𝑖 (14) 

where 𝜀𝑖~𝑁(0, 1), sorted by absolute values, is used to create the 
heteroskedasticity and 𝜂~𝑈(−0.5, 0.5) is the random error term. Thus, 
var(𝑢𝑖) is increasing in i. To compare power, we consider the following seven 
data-generating processes (DGPs) for the error term: 

1(1) : 0.7i i i iAR u u   
 (15) 

1(1) : 0.7i i i iAR u u    
 (16) 

1 2(2) : 0.5 0.4i i i i iAR u u u     
 (17) 

1 2 3 4(4) : 0.8 0.0 0.2 0.06i i i i i i iAR u u u u u        
 (18) 

1 1(1) : 0.7i i i i iMA u      
 (19) 

1 1(1) : 0.7i i i i iMA u      
 (20) 

1 1 2 2(2) : 0.5 0.4i i i i i i iMA u          
 (21) 

The following wild-bootstrap algorithm is used to compute size and 
power. The only difference between the two is that, for empirical size, the 
sample is simulated under the null hypothesis, while for power, the 
simulation is under the alternative hypothesis. In both cases, the model used 
under the null hypothesis is fitted to the simulated sample. T generally 
denotes any of the tests, that is, VR, QVR, WVR, WQVR and WAVR. 

1. Compute the OLS residuals, 𝑢̂𝑖 = 𝑦𝑖 − 𝑋𝑖𝛽̂.  

2. Calculate the test (say, T) using the OLS residuals obtained in step 1. 

3. Bootstrap 𝑦𝑖 (say, 𝑦𝑖
∗) using 𝑦𝑖

∗ = 𝑋𝑖𝛽̂ + {
𝑢̂𝑖𝑉𝑖

√(1−ℎ𝑖)
}, where ℎ𝑖 =

𝑋𝑖
𝑡(𝑋𝑡𝑋)−1𝑋𝑖 and 𝑉𝑖 is a random vector such that 𝐸(𝑉𝑖) = 0 and 𝐸(𝑉1

2) =
1. Here, 𝑉𝑖 is taken from the Rademacher distribution as Pr(𝑉𝑖 = 1) =
Pr(𝑉𝑖 = −1) = 0.5.  
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4. Repeat steps 1–3 B times (the number of bootstrap samples) to obtain 
the test for each bootstrap sample, that is, 𝑇1

∗, 𝑇2
∗, … , 𝑇𝐵

∗. 

5. Compute the 100(1 − 𝛼)% percentile (say, 𝑇1−𝛼
∗ ) of the bootstrap 

distribution obtained in step 4. 

6. Repeat steps 1–5 N times. The empirical size and power are computed 
as #(𝑇 > 𝑇1−𝛼

∗ )/𝑁. 

Kim (2006) and Jeong and Kang (2012) show that, using the bootstrap 
method, one can construct an empirical (bootstrap) distribution for the VR 
test that is robust to the form of heteroskedasticity. They argue that a 
bootstrap distribution gives more accurate critical values than an asymptotic 
normal distribution. We consider three choices of sample size – n = 30, 50 
and 100 – and four different lag lengths of the autoregressive serial 
correlation, p = 1, 2, 4, 12. The nominal size of the test is fixed at 5 percent 
and q = p + 1. The number of Monte Carlo runs is set to 1,000, while 500 
bootstrap samples are used. 

The results for the empirical size of the proposed tests for static and 
dynamic models are given in Tables 1 and 2, respectively. The static and 
dynamic models given in (12) and (13) are considered null models. The 
results given in Table 1 show that, when the null model is static, the size of 
the proposed test is a very close approximation to the corresponding 
nominal size. While the standard VR and QVR tests also yield a good size 
approximation, they deviate from the empirical size the larger the chosen 
lag. The WVR, WQVR and WAVR tests give better size results and remain 
stable at varying lag values. Thus, the approximation to the asymptotic 
distribution of the proposed tests is not affected by the mis-specified lag 
length. 

Table 1: Size comparison for static model with multiplicative 

heteroskedasticity  

  T = 30  T = 50  T = 100  

Test  p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 

VR 0.044 0.053 0.062 0.044 0.045 0.043 0.055 0.062 0.055 0.054 0.049 0.074 

QVR 0.055 0.050 0.061 0.055 0.043 0.053 0.052 0.050 0.055 0.059 0.056 0.056 

WVR 0.053 0.052 0.052 0.048 0.054 0.049 0.057 0.056 0.055 0.044 0.058 0.042 

WQVR 0.050 0.048 0.053 0.056 0.049 0.047 0.043 0.046 0.051 0.040 0.056 0.055 

WAVR 0.05 0.052 0.054 0.062 0.049 0.039 0.043 0.048 0.051 0.044 0.058 0.051 

Note: Nominal size = 5%. 
Source: Authors’ calculations 
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Table 2: Size comparison for dynamic model with multiplicative 

heteroskedasticity 

  T = 30  T = 50  T = 100  

Test p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 

VR 0.062 0.055 0.058 0.048 0.048 0.054 0.054 0.053 0.045 0.050 0.055 0.046 

QVR 0.043 0.052 0.047 0.048 0.050 0.044 0.054 0.055 0.036 0.049 0.055 0.058 

WVR 0.053 0.047 0.054 0.054 0.052 0.044 0.047 0.052 0.050 0.045 0.059 0.055 

WQVR 0.040 0.034 0.051 0.051 0.056 0.051 0.038 0.045 0.043 0.054 0.048 0.051 

WAVR 0.040 0.036 0.047 0.053 0.056 0.049 0.039 0.047 0.043 0.054 0.048 0.053 

Source: Authors’ calculations 

Table 2 gives the results for the dynamic model defined in (13). In 
this case, the proposed WVR test shows a closer size approximation than the 
other tests at different lag values. The numerical results show that the size of 
the modified VR tests is comparable with that of the classical VR tests as the 
lag and sample size increases. 

The results of empirical power against various alternatives are given 
in Tables 3 and 4. The sample is generated under seven different models: 
AR(1)+, AR(1)−, AR(2), AR(4), MA(1)+, MA(1)− and MA(2), as defined in 
equations (15) to (21). The results show that the proposed tests generally 
have a higher empirical power than the existing tests, outperforming the 
latter for all considered choices of p. For all considered alternative DGPs, we 
find that the power of the VR and QVR tests decreases as the lag increases. 
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Table 3: Empirical power for static model of multiplicative 

heteroskedasticity 
 

  T = 30  T = 50  T = 100   
Test p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12  
VR 0.926 0.927 0.826 0.608 0.992 0.988 0.959 0.785 1 1 1 0.951  
QVR 0.835 0.85 0.805 0.716 0.986 0.976 0.963 0.939 0.999 1 1 1 

AR(1)+ WVR 0.825 0.894 0.906 0.906 0.99 0.986 0.981 0.982 1 1 1 0.999  
WQVR 0.825 0.827 0.844 0.838 0.975 0.98 0.974 0.974 1 1 0.999 0.999  
WAVR 0.825 0.827 0.822 0.822 0.975 0.976 0.97 0.969 1 1 0.999 0.999  
VR 0.665 0.368 0.234 0.168 0.851 0.591 0.378 0.164 0.99 0.891 0.71 0.289  
QVR 0.665 0.663 0.607 0.511 0.851 0.844 0.801 0.722 0.99 0.983 0.974 0.923 

AR(1)- WVR 0.916 0.935 0.921 0.913 0.991 0.997 0.991 0.989 1 1 1 1  
WQVR 0.916 0.925 0.917 0.904 0.991 0.994 0.989 0.985 1 1 1 1  
WAVR 0.916 0.907 0.91 0.9 0.991 0.994 0.987 0.985 1 1 1 1  
VR 0.902 0.297 0.219 0.233 0.986 0.6 0.386 0.217 0.999 0.911 0.709 0.296  
QVR 0.902 0.946 0.946 0.93 0.986 0.988 0.991 0.99 0.999 1 1 1 

AR(2) WVR 0.937 0.955 0.954 0.955 0.982 0.987 0.992 0.996 1 1 1 1  
WQVR 0.937 0.898 0.891 0.889 0.982 0.963 0.971 0.961 1 0.999 0.997 0.996  
WAVR 0.937 0.862 0.879 0.865 0.982 0.954 0.967 0.956 1 1 0.997 0.994  
VR 0.925 0.919 0.786 0.456 0.995 0.996 0.958 0.677 1 1 0.988 0.884  
QVR 0.925 0.915 0.890 0.831 0.995 0.996 0.992 0.974 1 1 1 1 

AR(4) WVR 0.960 0.950 0.943 0.949 0.999 0.995 0.993 0.996 1 1 1 1  
WQVR 0.987 0.907 0.905 0.921 0.997 0.995 0.993 0.993 1 1 1 1  
WAVR 0.987 0.900 0.902 0.908 0.997 0.993 0.990 0.992 1 1 1 1  
VR 0.794 0.562 0.404 0.234 0.928 0.756 0.527 0.283 0.998 0.923 0.715 0.414  
QVR 0.575 0.597 0.513 0.352 0.835 0.874 0.823 0.677 0.987 0.994 0.988 0.943 

MA(1)+ WVR 0.756 0.858 0.871 0.876 0.939 0.970 0.985 0.979 0.999 1 1 1  
WQVR 0.535 0.543 0.561 0.551 0.84 0.797 0.826 0.826 0.999 0.973 0.975 0.968  
WAVR 0.535 0.539 0.555 0.55 0.84 0.769 0.795 0.807 0.999 0.967 0.965 0.955  
VR 0.458 0.411 0.312 0.215 0.722 0.707 0.584 0.279 0.934 0.941 0.9 0.484  
QVR 0.458 0.451 0.378 0.253 0.722 0.69 0.639 0.472 0.934 0.927 0.898 0.767 

MA(1)- WVR 0.658 0.552 0.526 0.531 0.909 0.779 0.751 0.759 0.996 0.94 0.938 0.945  
WQVR 0.658 0.662 0.662 0.652 0.909 0.873 0.848 0.884 0.996 0.981 0.987 0.99  
WAVR 0.658 0.653 0.664 0.645 0.909 0.852 0.835 0.867 0.996 0.97 0.98 0.987  
VR 0.705 0.356 0.157 0.104 0.871 0.530 0.250 0.098 0.977 0.823 0.441 0.113  
QVR 0.705 0.699 0.657 0.547 0.871 0.870 0.875 0.788 0.977 0.992 0.988 0.969 

MA(2) WVR 0.668 0.725 0.699 0.693 0.865 0.881 0.884 0.868 0.972 0.987 0.988 0.979  
WQVR 0.668 0.695 0.664 0.670 0.865 0.849 0.860 0.859 0.972 0.962 0.976 0.974  
WAVR 0.668 0.669 0.648 0.640 0.865 0.830 0.841 0.838 0.972 0.949 0.969 0.969 

Source: Authors’ calculations 
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Table 4: Empirical power for dynamic model of multiplicative 

heteroskedasticity 
  

T = 30  T = 50  T = 100   
Test p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12  
VR 0.841 0.830 0.700 0.514 0.981 0.979 0.919 0.698 0.999 1 0.997 0.919  
QVR 0.647 0.621 0.563 0.507 0.926 0.924 0.899 0.821 0.999 1 0.999 0.989 

AR(1)+ WVR 0.849 0.806 0.803 0.815 0.982 0.959 0.965 0.973 1 0.999 1 1  
WQVR 0.618 0.640 0.641 0.636 0.933 0.932 0.931 0.934 1 0.997 1 1  
WAVR 0.618 0.609 0.628 0.618 0.933 0.918 0.917 0.913 1 0.996 0.999 1  
VR 0.848 0.292 0.168 0.132 0.990 0.680 0.434 0.184 1 0.996 0.825 0.378  
QVR 0.848 0.870 0.815 0.734 0.990 0.980 0.985 0.942 1 1 1 0.998 

AR(1)- WVR 0.865 0.872 0.866 0.869 0.984 0.983 0.985 0.981 1 1 1 1  
WQVR 0.865 0.840 0.823 0.833 0.984 0.980 0.981 0.979 1 1 1 1  
WAVR 0.865 0.801 0.795 0.803 0.984 0.980 0.979 0.972 1 1 1 1  
VR 0.833 0.058 0.053 0.067 0.973 0.264 0.097 0.06 0.999 0.738 0.379 0.119  
QVR 0.833 0.909 0.912 0.898 0.973 0.986 0.989 0.987 0.999 1 1 1 

AR(2) WVR 0.861 0.928 0.92 0.933 0.971 0.99 0.991 0.993 1 1 1 1  
WQVR 0.861 0.759 0.777 0.763 0.971 0.947 0.947 0.947 1 0.996 0.998 0.997  
WAVR 0.861 0.69 0.739 0.727 0.971 0.932 0.94 0.937 1 0.996 0.999 0.998  
VR 0.924 0.912 0.732 0.438 0.996 0.994 0.939 0.614 1 1 0.997 

 

 
QVR 0.776 0.742 0.678 0.626 0.983 0.997 0.971 0.923 1 1 1 

 

AR(4) WVR 0.927 0.906 0.874 0.893 0.993 0.988 0.984 0.991 1 0.999 1 1  
WQVR 0.764 0.798 0.748 0.791 0.977 0.979 0.974 0.982 1 0.999 1 1  
WAVR 0.764 0.771 0.737 0.768 0.977 0.973 0.968 0.976 1 0.999 1 1  
VR 0.771 0.489 0.337 0.219 0.9 0.687 0.467 0.265 0.996 0.989 0.641 0.373  
QVR 0.369 0.392 0.342 0.281 0.746 0.799 0.744 0.58 0.98 0.992 0.979 0.916 

MA(1)+ WVR 0.969 0.814 0.812 0.813 0.926 0.975 0.968 0.962 0.996 0.997 1 1  
WQVR 0.383 0.372 0.398 0.397 0.752 0.74 0.728 0.744 0.977 0.955 0.956 0.965  
WAVR 0.383 0.364 0.397 0.39 0.752 0.717 0.716 0.715 0.977 0.943 0.943 0.949  
VR 0.501 0.484 0.336 0.221 0.816 0.848 0.727 0.397 0.988 0.992 0.987 0.788  
QVR 0.501 0.444 0.403 0.297 0.816 0.831 0.75 0.569 0.988 0.994 0.984 0.914 

MA(1)- WVR 0.470 0.441 0.434 0.400 0.828 0.678 0.689 0.679 0.983 0.922 0.930 0.928  
WQVR 0.470 0.503 0.521 0.505 0.828 0.798 0.818 0.794 0.983 0.961 0.979 0.984  
WAVR 0.470 0.504 0.521 0.515 0.828 0.789 0.809 0.785 0.983 0.951 0.974 0.974  
VR 0.589 0.235 0.085 0.084 0.821 0.438 0.167 0.069 0.985 0.730 0.34 0.078  
QVR 0.589 0.571 0.567 0.438 0.821 0.826 0.833 0.703 0.985 0.973 0.979 0.952 

MA(2) WVR 0.604 0.657 0.607 0.585 0.830 0.872 0.846 0.873 0.986 0.985 0.981 0.975  
WQVR 0.604 0.590 0.548 0.558 0.830 0.822 0.810 0.826 0.986 0.959 0.97 0.951  
WAVR 0.604 0.541 0.521 0.536 0.830 0.801 0.776 0.797 0.986 0.946 0.953 0.941 

Source: Authors’ calculations 

Table 4 gives the empirical power results for the dynamic model of 
multiplicative heteroskedasticity. These are generally similar to the results 
for the static model. The power of the WVR test is higher, especially for 
small samples. In the dynamic model, as the lag length increases, the power 
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of the VR and QVR tests decreases even when the lag length is properly 
specified. This decrease is more evident in the case of negative 
autocorrelation, for example, for MA(1)− and AR(1)−. The VR test becomes 
almost powerless for larger lags in the MA(2) and AR(2) models. Again, 
the proposed tests indicate good power except in some cases, for instance, 
MA(1)− for small samples. 

5. Variance-Break Case 

This section considers variance-break heteroskedasticity. Following 
Jeong and Kang (2012), the heteroskedastic factor 𝜀𝑖 is defined as a 
categorical variable as follows:  

2 2 2 2

1 1 2 1 2 3 21[ ] 1[ ] 1[ ].i i n n i n i n             
 (24) 

We have specified 𝜎1
2 = 1, 𝜎2

2 = 4, 𝜎3
2 = 9, 𝜏1 = 0.3 and 𝜏2 = 0.7 in 

this study. Except for the change in the type of heteroskedasticity, the static 
and dynamic DGPs used are similar to those employed in the previous 
section. 

Table 5 gives the empirical size of the considered VR tests for the 
static model, using a two-point variance break. The results show that the 
proposed tests are comparable in terms of empirical size and that the size of 
the VR test is adversely affected by the presence of a break in variance, 
especially when the sample is small, that is, for n = 30 and n = 50. The results 
for the dynamic model with a two-point variance break, given in Table 6, are 
not much different from the results for the static model. The proposed tests 
yield a good size approximation for both models in the variance-break case. 

Table 5: Empirical size under static model with variance break 

  T = 30  T = 50  T = 100  

Test  p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 

VR 0.048 0.063 0.059 0.059 0.054 0.059 0.056 0.06 0.056 0.041 0.041 0.048 

QVR 0.057 0.056 0.049 0.052 0.06 0.049 0.060 0.048 0.047 0.051 0.044 0.053 

WVR 0.055 0.054 0.06 0.054 0.058 0.058 0.060 0.048 0.056 0.046 0.047 0.057 

WQVR 0.048 0.051 0.055 0.049 0.058 0.047 0.055 0.057 0.050 0.053 0.052 0.052 

WAVR 0.048 0.051 0.052 0.055 0.058 0.044 0.052 0.059 0.050 0.053 0.049 0.052 

Source: Authors’ calculations 
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Table 6: Empirical size under dynamic model with variance break 

  T = 30  T = 50  T = 100  

Test p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 

VR 0.060 0.059 0.057 0.06 0.065 0.049 0.056 0.054 0.049 0.045 0.051 0.051 

QVR 0.042 0.046 0.048 0.051 0.05 0.048 0.054 0.047 0.038 0.044 0.045 0.055 

WVR 0.042 0.044 0.057 0.034 0.05 0.048 0.052 0.047 0.04 0.048 0.04 0.046 

WQVR 0.042 0.035 0.04 0.045 0.05 0.043 0.049 0.038 0.038 0.041 0.033 0.04 

WAVR 0.042 0.033 0.039 0.043 0.05 0.04 0.045 0.041 0.038 0.041 0.034 0.038 

Source: Authors’ calculations 

The empirical power results of the variance-break case for the five 
tests are given in Tables 7 and 8 and lead to the same conclusion as for the 
multiplicative heteroskedasticity case. The tests’ good performance is, 
therefore, unaffected by the change in type of heteroskedasticity. 
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Table 7: Empirical power under static model with variance-break 

heteroskedasticity 
 

  T = 30  T = 50  T = 100  

 Test p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 

AR(1)+ VR 0.992 0.896 0.818 0.582 0.994 0.987 0.955 0.803 1 1 1 1 

QVR 0.825 0.794 0.744 0.685 0.973 0.971 0.956 0.936 1 1 1 1 

WVR 0.922 0.626 0.601 0.63 0.994 0.982 0.985 0.985 1 1 1 1 

WQVR 0.825 0.799 0.779 0.786 0.973 0.975 0.97 0.973 1 1 1 1 

WAVR 0.825 0.777 0.761 0.779 0.973 0.962 0.965 0.968 1 1 1 1 

AR(1)- VR 0.859 0.406 0.271 0.25 0.99 0.764 0.542 0.315 1 0.995 0.943 0.611 

QVR 0.859 0.882 0.844 0.771 0.99 0.987 0.98 0.96 1 1 1 1 

WVR 0.859 0.894 0.898 0.876 0.99 0.987 0.984 0.986 1 1 1 1 

WQVR 0.859 0.876 0.889 0.879 0.99 0.987 0.987 0.985 1 1 1 1 

WAVR 0.859 0.857 0.875 0.864 0.99 0.987 0.984 0.98 1 1 1 1 

AR(4) VR 0.955 0.93 0.834 0.515 0.998 0.998 0.949 0.671 1 1 1 0.87 

QVR 0.877 0.876 0.852 0.771 0.993 0.992 0.98 0.982 1 1 1 1 

WVR 0.877 0.736 0.721 0.722 0.993 0.962 0.961 0.96 1 1 1 1 

WQVR 0.877 0.878 0.879 0.877 0.993 0.987 0.985 0.987 1 1 1 1 

WAVR 0.877 0.873 0.856 0.859 0.993 0.986 0.983 0.986 1 1 1 1 

MA(1)+ VR 0.701 0.507 0.359 0.235 0.923 0.701 0.493 0.294 1 0.953 0.727 0.441 

QVR 0.473 0.491 0.427 0.356 0.83 0.855 0.776 0.597 0.997 0.998 0.996 0.959 

WVR 0.701 0.835 0.835 0.856 0.923 0.973 0.981 0.97 1 1 1 1 

WQVR 0.476 0.504 0.503 0.528 0.83 0.794 0.792 0.798 0.997 0.982 0.985 0.984 

WAVR 0.473 0.502 0.503 0.524 0.83 0.768 0.778 0.775 0.997 0.979 0.978 0.976 

MA(1)- VR 0.581 0.56 0.461 0.365 0.827 0.607 0.444 0.24 0.994 0.885 0.678 0.962 

QVR 0.581 0.552 0.490 0.36 0.827 0.874 0.791 0.602 0.994 0.998 0.997 0.961 

WVR 0.581 0.463 0.481 0.474 0.827 0.891 0.885 0.879 0.994 0.998 0.998 0.949 

WQVR 0.581 0.593 0.609 0.59 0.827 0.789 0.812 0.787 0.994 0.989 0.985 0.984 

WAVR 0.581 0.578 0.614 0.583 0.827 0.762 0.789 0.772 0.994 0.985 0.978 0.979 

MA(2) VR 0.61 0.289 0.109 0.111 0.842 0.504 0.201 0.085 0.98 0.823 0.462 0.123 

QVR 0.61 0.642 0.594 0.491 0.842 0.851 0.824 0.726 0.98 0.991 0.988 0.967 

WVR 0.61 0.673 0.651 0.624 0.842 0.87 0.854 0.857 0.98 0.992 0.987 0.986 

WQVR 0.61 0.63 0.632 0.612 0.842 0.819 0.838 0.793 0.98 0.975 0.987 0.974 

WAVR 0.61 0.597 0.6 0.593 0.842 0.803 0.798 0.767 0.98 0.968 0.974 0.966 

AR(2) VR 0.85 0.145 0.11 0.143 0.977 0.482 0.249 0.175 1 0.908 0.692 0.277 

QVR 0.85 0.887 0.887 0.858 0.977 0.99 0.981 0.975 1 1 1 1 

WVR 0.85 0.902 0.907 0.912 0.977 0.994 0.986 0.986 1 1 1 1 

WQVR 0.85 0.812 0.827 0.832 0.977 0.962 0.956 0.958 1 1 1 0.998 

WAVR 0.85 0.777 0.801 0.796 0.977 0.955 0.946 0.952 1 1 1 0.998 

Source: Authors’ calculations 
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Table 8: Empirical power under dynamic model with variance-break 

heteroskedasticity 
 

  T = 30  T = 50  T = 100   
Test p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 p = 1 p = 2 p = 4 p = 12 

AR(1)+ VR 0.825 0.779 0.685 0.456 0.974 0.954 0.906 0.633 1 0.999 0.996 0.889 

QVR 0.572 0.546 0.501 0.409 0.897 0.88 0.854 0.742 0.998 0.997 0.998 0.983 

WVR 0.828 0.769 0.772 0.773 0.974 0.931 0.941 0.944 0.998 0.997 0.998 0.999 

WQVR 0.572 0.55 0.548 0.562 0.897 0.878 0.887 0.861 0.998 0.997 0.998 0.999 

WAVR 0.572 0.539 0.529 0.536 0.897 0.866 0.872 0.854 0.998 0.996 0.998 0.999 

AR(1)- VR 0.777 0.172 0.114 0.098 0.97 0.453 0.231 0.095 1 0.881 0.602 0.164 

QVR 0.777 0.759 0.737 0.629 0.97 0.97 0.961 0.924 1 1 1 1 

WVR 0.777 0.793 0.807 0.811 0.97 0.974 0.973 0.981 1 1 1 1 

WQVR 0.777 0.707 0.728 0.723 0.97 0.953 0.962 0.966 1 1 1 1 

WAVR 0.777 0.662 0.702 0.673 0.97 0.937 0.953 0.948 1 1 1 1 

AR(4) VR 0.894 0.885 0.711 0.400 0.991 0.989 0.907 0.525 1 1 0.992 0.767 

QVR 0.698 0.691 0.635 0.548 0.964 0.963 0.932 0.853 1 1 1 1 

WVR 0.698 0.851 0.846 0.854 0.964 0.978 0.972 0.848 1 1 1 1 

WQVR 0.698 0.704 0.701 0.692 0.964 0.959 0.951 0.931 1 1 1 1 

WAVR 0.698 0.687 0.691 0.676 0.964 0.952 0.941 0.925 1 0.999 0.999 1 

MA(1)+ VR 0.651 0.451 0.306 0.203 0.907 0.591 0.383 0.209 0.996 0.906 0.614 0.296 

QVR 0.348 0.345 0.314 0.263 0.700 0.724 0.691 0.483 0.983 0.993 0.986 0.93 

WVR 0.651 0.774 0.805 0.779 0.907 0.947 0.968 0.972 0.996 1 1 1 

WQVR 0.348 0.349 0.365 0.364 0.700 0.642 0.65 0.641 0.983 0.957 0.96 0.963 

WAVR 0.348 0.351 0.365 0.357 0.700 0.619 0.628 0.621 0.983 0.952 0.943 0.945 

MA(1)- VR 0.42 0.353 0.237 0.164 0.742 0.73 0.599 0.302 0.987 0.995 0.982 0.7 

QVR 0.42 0.386 0.322 0.253 0.742 0.716 0.633 0.426 0.987 0.992 0.976 0.888 

WVR 0.42 0.358 0.361 0.360 0.742 0.593 0.592 0.574 0.987 0.927 0.91 0.91 

WQVR 0.42 0.405 0.439 0.415 0.742 0.72 0.723 0.709 0.987 0.972 0.972 0.966 

WAVR 0.42 0.412 0.433 0.415 0.742 0.706 0.702 0.691 0.987 0.964 0.957 0.957 

MA(2) VR 0.51 0.177 0.059 0.062 0.773 0.338 0.092 0.081 0.977 0.653 0.205 0.047 

QVR 0.51 0.526 0.505 0.382 0.773 0.786 0.778 0.743 0.977 0.984 0.989 0.954 

WVR 0.51 0.551 0.561 0.551 0.773 0.812 0.801 0.784 0.977 0.984 0.985 0.975 

WQVR 0.51 0.483 0.475 0.478 0.773 0.743 0.759 0.751 0.977 0.957 0.964 0.954 

WAVR 0.51 0.446 0.445 0.443 0.773 0.709 0.717 0.696 0.977 0.942 0.951 0.938 

AR(2) VR 0.766 0.04 0.026 0.057 0.947 0.073 0.033 0.039 1 0.259 0.059 0.02 

QVR 0.766 0.85 0.831 0.826 0.947 0.984 0.988 0.971 1 1 1 1 

WVR 0.766 0.856 0.861 0.882 0.947 0.986 0.992 0.983 1 1 1 1 

WQVR 0.766 0.61 0.561 0.64 0.947 0.829 0.844 0.845 1 0.965 0.97 0.974 

WAVR 0.766 0.511 0.508 0.573 0.947 0.792 0.837 0.839 1 0.974 0.98 0.986 

Source: Authors’ calculations 

6. Real-Life Applications 

This section applies the classical and proposed VR tests to daily 
returns data for two companies listed on the Pakistan Stock Exchange and 
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to the Microsoft Corporation. As Yasmin (2009) points out, 
heteroskedasticity is very common in financial data series. The data used 
here represents the daily stock returns of Dawood Hercules (DAWH) and 
Kohinoor Textile Mills Limited (KTML) for the period 1 July 2004 to 28 
February 2014 as well as the daily stock returns of Microsoft for the period 
May 2000 to May 2017.  

We test the series for the presence of conditional heteroskedasticity, 
using Engle’s (1982) LM test. As Figure 1 shows, the daily returns series for 
DAWH does not exhibit heteroskedasticity (LM = 0.0717, p-value = 1). The 
KTML and Microsoft series, however, both indicate the presence of 
heteroskedasticity (LM = 479.9, p-value = 0.000; and LM = 261.27, p-value = 
0.000, respectively).  

Figure 1: Daily returns data for DAWH, KTML and Microsoft 

(a) Homoskedasticity (DAWH) 
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(b) Variance break (KTML) 

 

(c) Multiplicative heteroskedasticity (Microsoft) 

 

The results of the VR tests are given in Table 9. The DAWH return 
series does not exhibit any conditional heteroskedasticity. All the tests are 
significant, indicating the presence of autocorrelation in the data even at a 1 
percent level of significance for all considered choices of p. In the variance-
break case – for the KTML returns – the VR and QVR tests are not significant 
for any lag value, even at a 10 percent level of significance. The modified 
QVR and AVR tests show very strong levels of rejection.  
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When the heteroskedasticity is multiplicative, the VR and WVR tests 
yield insignificant results at all lag values, while the QVR, WQVR and 
WAVR tests are significant at lags 1, 2 and 4 at the 5 percent level. The 
behavior of the proposed tests is consistent with the change in lag value, 
although the critical region for QVR changes with the lag value. The 
proposed tests yield significant results for all values of p at the 10 and 5 
percent levels of significance and present fairly strong evidence against the 
null hypothesis. 

Table 9: VR tests for daily returns data 

p VR p value QVR p value WVR p value WAVR p value WQVR p value 

DAWH          

1 0.096*** 0.0000 0.0046*** 0.0000 0.0672*** 0.0000 0.0672*** 0.0000 0.0064*** 0.0000 

2 0.1653*** 0.0000 0.0072*** 0.0000 0.1108*** 0.0000 0.0018*** 0.0000 0.0116*** 0.0000 

4 0.2447*** 0.0000 0.0095*** 0.0010 0.2267*** 0.0000 0.2267*** 0.0000 0.0233*** 0.0000 

12 0.4199*** 0.0000 0.0132*** 0.0050 0.6808*** 0.0020 0.6808*** 0.0010 0.0699*** 0.0010 

KTML          

1 -0.0345 0.9502 0.0006* 0.0938 -0.0242 0.9502 0.0242* 0.0938 0.0006* 0.0938 

2 -0.0451 0.9222 0.0008 0.1634 -0.0489 0.945 0.0477* 0.0818 0.0017* 0.0646 

4 -0.0294 0.7268 0.0013 0.2046 -0.0906 0.9296 0.1026* 0.0768 0.0035** 0.0561 

12 -0.0994 0.871 0.0038 0.1548 -0.2725 0.9286 0.3085* 0.0802 0.0107** 0.0578 

Microsoft          

1 -0.0365 0.9884 0.0007** 0.0254 -0.0255 0.9884 0.0255** 0.0254 0.0009** 0.0254 

2 -0.053 0.9846 0.0009** 0.0422 -0.0540 0.9870 0.0540** 0.0408 0.0019** 0.0320 

4 -0.078 0.9896  0.0012* 0.0676 -0.1117 0.9926 0.1119** 0.0342 0.0038** 0.0288 

12 -0.1475 0.9920 0.0034** 0.021 -0.3376 0.9902 0.3385** 0.0338 0.0115** 0.0262 

Note: * = significant at 10% level, ** = significant at 5% level, *** = significant at 1% level. 

7. Conclusion 

The performance of autocorrelation tests is adversely affected if the 
errors do not have a constant variance. In this context, we propose three 
alternative VR tests that yield very good size properties for both small and 
large samples and are not heavily dependent on the specified lag. These tests 
retain their power across static and dynamic models regardless of whether 
the heteroskedasticity is multiplicative or if there is a variance break. 
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