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Abstract 

This article studies the ability of the GARCH family of models to 
accurately forecast the volatility of S&P500 stock index returns across the financial 
crisis that affected markets in 2003–07. We find the GJR-GARCH (1,1) model to 
be superior in its ability to forecast the volatility of the initial crisis period (2003–
06) compared to its realized volatility, which acts as a proxy for the actual. This 
model is then extended to make forecasts for the crisis period. We conclude that the 
model’s ability to forecast volatility across the crisis is not substantially affected, 
thus supporting the use of the GARCH family of models in forecasting volatility. 
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1. Introduction 

Volatility modeling and forecasting has received enormous attention 
in the last two decades, driven by its importance to the financial sector. 
Many studies have tried to obtain accurate estimates of volatility, which is a 
key input into the pricing of options and assets and in hedging strategies. 

There are several approaches to forecasting volatility. The options-
based approach extracts a volatility estimate from the price of traded 
options. Another approach is to look at the past prices of financial 
securities, i.e., historical volatility. A third approach—which we employ 
in this study—makes use of the generalized autoregressive conditional 
heteroscedastic (GARCH) family of models. These have been specifically 
developed to model volatility in financial time series, and the basic 
model’s extensions are able to take into account the asymmetric effects of 
good and bad news on volatility.  
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Our aim is twofold. The first is to determine which of the GARCH 
family models performs best at the out-of-sample forecasting of stock 
index returns volatility during the initial sample period (2003–06). The 
second aim relates to the recent subprime mortgage crisis that hit the US 
market. We will use the selected model to make forecasts for the crisis 
period and assess its performance for this period relative to before.  

The trigger for the recent financial crisis was a shift in how 
mortgages were issued in the US. The crisis, the effects of which began to 
show in early 2007, had a major adverse impact on banks and financial 
markets in the country and around the world. The Standard and Poor’s 
(S&P) 500 composite index, the leading indicator of the US economy’s 
performance, went down 45 percent between 2007 and 2008. It is of 
interest to examine how well the GARCH models are able to forecast the 
returns volatility of the index during this turbulent time relative to the 
preceding tranquil time.  

We need measures of true volatility in order to assess the quality of 
the forecasts made for both periods. Volatility is, however, a latent variable 
in that it is unobserved and develops stochastically over time. While 
squared returns are commonly used as a proxy for true volatility, they 
have proved a noisy estimator. Instead, we will use realized volatility (RV), 
a proxy that utilizes the extra information provided by intraday returns.  

The following sections are organized as follows. The existing 
literature is outlined in Section 2, the dataset used is described in Section 3, 
and our proposed methodology explained in Section 4. Section 5 presents 
our empirical findings and Section 6 provides concluding remarks. 

2. A Review of the Literature  

2.1. Modeling and Forecasting Volatility 

The history of the GARCH models originates in Engle’s (1982) 
seminal study, followed by the more popular generalization proposed by 
Bollerslev (1986).1 In one of the earliest studies on the topic, Akgiray 
(1989) found support for the GARCH (1,1) model’s ability to better 
forecast monthly return variances (using CRSP value-weighted indices 
for 1983–86) than the ARCH model, historical volatility estimates, and 
exponentially weighted moving averages.  

                                                 
1 Bollerslev, incidentally, used the same index as we do—the S&P500—to introduce the popular 
GARCH specification for modeling financial time series volatility. 
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Poon and Granger’s (2003) extensive review of the literature on 
financial forecasting spans 93 published and working papers, providing a 
detailed analysis of the various techniques used in financial forecasting 
and of the quality of results obtained from each. They conclude that, from 
within the GARCH family, asymmetric models yield superior forecasts 
because they factor in the more pronounced effect of a negative shock to 
volatility than a positive one of same magnitude. In particular, for stock 
index data, Brailsford and Faff (1996) find evidence in favor of the 
Glosten-Jagannathan-Runkle (GJR)-GARCH (1,1) model when applied to 
Australian data, and Engle and Ng (1993) the same for Japanese daily 
stock index returns (the Japanese TOPIX index) during 1980–88.  

Using late 19th- and early 20th-century US data, Pagan and Schwert 
(1990) propose the exponential GARCH (EGARCH) to be the best fit. Kim 
and Kon (1994) examine data on 30 individual stocks and three stock 
indices in the US over 1962–90, and find that the GJR-GARCH (1,3) model 
performs well for stocks while the EGARCH (1,3) best models stock index 
volatility. Thus, overall, there is mixed evidence on which specific model 
is superior to the other. All evidence, however, points toward the 
superiority of asymmetric GARCH models for stock index returns 
volatility relative to their symmetric counterparts.  

Taylor (2004) employs eight different stock indices from across the 
world—including the S&P500 for New York—to concentrate on one-step-
ahead forecasting. Using weekly data for the period 1987–1995, the 
author finds that the GJR-GARCH model performs best when the 
regression analysis uses RV as a proxy for actual unobserved volatility. 
The GJR-GARCH (1,1) model “estimated using daily returns outperforms 
all five GARCH models estimated using weekly returns. The extra 
information supplied by the higher frequency data is clearly beneficial for 
the GJR-GARCH model.” 

Corradi and Awartani (2005) use S&P500 index daily data for the 
period 1990–2001 to study the forecasting ability of several GARCH 
models. As mentioned in Section 1, a measure of true variance is required 
in order to evaluate the quality of the forecasts made. Since the true 
variance based on the population is latent, a proxy is used—in this case,  
the authors adopt the conventional approach of using squared returns as 
a proxy for unobservable volatility process since their aim is merely to 
rank the models. They find that the asymmetric GARCH models are 
better than the GARCH (1,1), although this dominance is smaller for 
forecasts of longer horizons.  
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2.2. RV as a Proxy for True Volatility 

The burgeoning literature on time-varying financial market 
volatility abounds with empirical studies in which competing models are 
evaluated and compared on the basis of their forecast performance. The 
variable of interest (volatility) is not directly observable, rather being 
inherently latent. As a consequence, any assessment of forecast precision is 
plagued by problems associated with its measurement. Recognition of the 
importance of this issue led to a number of studies conducted in the late 
1990s that advocated the use of so-called RV, constructed from the 
summation of squared high-frequency returns, as a method for improving 
the volatility measure (Anderson, Bollerslev, & Meddahi, 2005). 

Groundbreaking work by Anderson and Bollerslev (1997) using 
two series of spot exchange rates (DM-$ and ¥-$ spot exchange rates from 
1 October 1987 through 30 September 1992) shows that an alternate 
proxy, i.e., RV, helps the GARCH model explain more than half of true 
volatility. The basis of RV is found in continuous time whereby the extra 
information contained in intraday data reduces the sampling error, 
yielding better estimates of true unobserved volatility. Anderson and 
Bollerslev use five-minute frequency data to show improved out-of-
sample forecasting as opposed to when squared returns are used.  

Subsequent studies, such as that by Hansen and Lunde (2006), 
establish that the use of squared returns worsens the predictive ability of 
GARCH models out of sample even when they perform extremely well 
within the sample. McMillan and Speight (2004) lends further support to the 
use of RV, concluding that GARCH models can successfully model the 
conditional variance of financial time series but that their forecasting ability 
is adversely affected when compared with a fallacious estimate of volatility. 
Using RV as a proxy, they use data from 17 daily exchange rate series 
relative to the US dollar for the period 1990–1996 to prove that GARCH 
models do better at forecasting volatility than the smoothing and moving-
average models that had earlier been thought superior (see Figlewski, 1997). 

3. Description of Dataset 

3.1. In-Sample Data 

The first part of our empirical analysis is based on the S&P500 
composite index for the period 2 January 2003 to 29 December 2006 (data 
obtained from Yahoo Finance). This in-sample period consists of 1,007 
daily observations for the four-year trading period. The S&P500 is a 
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value-weighted index of the stocks of 500 leading industries traded on the 
US stock exchanges based on their market capitalization (Standard and 
Poor’s Online) and a leading indicator of the US’s equity market. The 
sample period is chosen as such to avoid the effects of the “dot.com” 
crash of the early 2000s and to end just before the latest crisis, the study of 
which is our objective.  

The second part of the analysis extends this sample period from 
January 2003 to December 2007, by which point the effects of the crisis 
had begun to show (note the downward trend toward the end of the 
plotted graph in Figure 1), increasing number of observations to 1,257 for 
the five-year period.  

Figure 1: S&P500 index (2003–07) 

 
Source: Author’s calculations. 

The daily stock index value (Pt) series is nonstationary; it follows 
an upward trend and no mean reversion (Figure 1). This is formally 
confirmed by using the Dickey-Fuller test to test for the presence of a unit 
root, which is an indicator of the nonstationarity of the series: 

∆𝑦𝑡 = 𝛿𝑦𝑡−1 + 𝑢𝑡  (1) 

𝑦𝑡 is the 𝑃𝑡 series and 𝑢𝑡 the error term. The null hypothesis 
proposes that there is a unit root, 𝛿 = 0. Regressing the first difference of 
the 𝑃𝑡 series on its own lag yields a p-value of 0.8105 and so the null 
hypothesis cannot be rejected at a 5-percent confidence level, confirming 
that the series is non-stationary. Given that the 𝑃𝑡 series is nonstationary, 
we use daily stock returns for analysis: 

𝑅𝑡 = ln (𝑃𝑡/𝑃𝑡−1) (2) 
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Converting the index value series to a returns series results in a 
graph that reverts to its long-run mean instead of following an upward 
trend. The mean of the series is close to 0, and imposing a normal 
distribution line on its histogram shows that the 𝑅𝑡 series is characterized 
by thicker tails than normal (Figure A1 in the Appendix).  

The distribution is negatively skewed and, furthermore, more 
peaked than the normal curve, indicating excess kurtosis (Table 1). The 
joint skewness/kurtosis test for normality yields a p-value of 0.00, 
allowing us to reject the null of normality. The series also demonstrates 
another characteristic common to financial time series—volatility 
clustering, i.e., periods of well-defined high and low volatility. 

Table 1: Summary statistics for Rt series 

 Observations Mean 
Standard 
deviation Skewness Kurtosis Min. Max. 

Rt 1,007 0.0004 0.0078 –0.11 4.86 –0.036 0.035 

Source: Author’s calculations. 

3.2. Out-of-Sample Data 

If true volatility is, as discussed above, latent, then in order to 
evaluate out-of-sample forecasts, it is important to find a proxy for it. 
Anderson, Bollerslev, Diebold, and Christoffersen (2006) define the 𝑅𝑡 
series as comprising an expected conditional mean return term (𝜇𝑡) and 
another term (𝜀𝑡) that comprises the standard deviation and an 
idiosyncratic error term (𝑧𝑡) such that 

𝑅𝑡 = 𝜇𝑡|𝑡−1 + 𝜎𝑡|𝑡−1𝑧𝑡 (3) 

The one-step-ahead volatility forecast can therefore be compared 
with squared returns: 

𝑅𝑡2 = 𝜎𝑡|𝑡−1
2 𝑧𝑡2 (4) 

However the variance of 𝑧𝑡 results in a great deal of noise when 
squared returns are used as the true underlying volatility. We therefore 
propose considering the 𝑅𝑡 series as a continuous time process so that 
true volatility, referred to as integrated volatility (IV), is given by 

𝐼𝑉(𝑡) = ∫ 𝜎2(𝑠)𝑑𝑠𝑡
𝑡−1  (5) 
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If the returns series is sampled discretely and its variance taken 
for infinitesimally small periods, it will give an approximate measure of 
IV(t) (see Andersen, Bollerslev, Diebold, & Ebens, 2001; Andersen, 
Bollerslev, Diebold, & Labys, 2001, 2003). This approximate measure, RV, 
is not affected by the idiosyncratic error (𝑧𝑡) as above, and is thus a far 
superior alternative that utilizes the additional information that intraday 
data has to offer. Hansen and Lunde’s (2006) method is used to construct 
RV estimates as follows: 

=

=∑ 2

1

m

t i
i

RV y  
(6) 

yi, i = 1,…, m are intraday returns, m being the number of returns 
in one trading day. The idea is that, with increased sampling frequency, 
this measure is a better approximation of true volatility (t → ∞, RVt → 
IVt). The important question that arises is the frequency at which the data 
should be sampled. At the highest frequencies, tick-by-tick returns violate 
the restrictions implied by the no-arbitrage assumptions in continuous-
time asset pricing models. These same features also bias empirical RV 
measures constructed directly from ultra-high-frequency returns,2 so in 
practice the measures are instead constructed from intraday returns 
sampled at an intermediate frequency (Anderson et al., 2005).  

The S&P500 index is based on five-days-a-week trading starting at 
0830 and ending at 1500. Market microstructure frictions can cause 
problems with very high-frequency data, so despite the availability of 
one-minute-interval data, we will use intermediate-frequency data 
sampled at five-minute intervals (our data source is TickData Online). 
This generates 78 observations for each day, which are then used to 
construct RV estimates for the two out-of-sample periods, each spanning 
six months beginning in January 2007 and January 2008, respectively. 

4. Methodology 

First, we model the volatility of the S&P500 index daily returns in 
order to predict their future values. Second, we compare the out-of-sample 
forecasting ability of the fitted models and select whichever model 
produces superior forecasts. The sample period is then extended up to 
December 2007, and the selected model re-estimated and used to produce 
crisis-period forecasts. These forecasts are then compared with the earlier 
                                                 
2 This is due to market microstructure noise—bid-ask price spreads, jumps, and formation of patterns. 
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ones to establish the impact of the crisis period on their accuracy. We 
formally check for the presence of ARCH effects (conditional 
heteroscedasticity), using Engle’s (1982) Lagrange Multiplier test.  

The stylized facts concerning financial time series—persistence in 
volatility, mean-reverting behavior, and the asymmetric impact of 
negative- versus positive-return innovations—may significantly influence 
volatility. Among others, Engle and Patton (2001) illustrate these stylized 
facts and the GARCH models’ ability—evaluated by their forecasting 
ability—to capture these characteristics. The sample employed in this 
study displays similar characteristics, thus the next logical step is to 
estimate the GARCH family of models: 

α α ε β− −

= =

= + +∑ ∑2
0

1 1

  
q p

t i t i i t i
i i

h h  
(7) 

This GARCH process does not differentiate between the impact of a 
positive and negative unexpected change in returns. It is therefore unable 
to capture the asymmetric effect of good or bad news on the volatility of 
the financial time series—a phenomenon termed the “leverage effect.”  

Anderson, Bollerslev, Diebold, and Ebens (2001) present two 
explanations for this so-called leverage effect. The first is that, when there 
is a negative shock, i.e., a negative return, it increases financial and 
operating leverage, which causes volatility to rise. The second is that, “if 
the market risk premium is an increasing function of volatility, large 
negative returns increase the future volatility by more than positive 
returns due to a volatility feedback effect.” This means that the effect on 
volatility of unexpected bad news in the market would be higher than 
that of unexpected good news of the same magnitude. This renders the 
symmetry constraint imposed on the conditional variance equation in the 
GARCH process invalid. It is imperative to take account of this 
characteristic in order to make effective forecasts. 

The presence of asymmetry in a financial time series necessitates 
the use of variants of the GARCH model that capture this phenomenon. 
Our review of the literature has established these models’ goodness of fit 
as well as their forecasting ability. The mixed response concerning the 
superiority of a particular kind of model makes it difficult to allow a 
single choice and, so, we estimate the basic asymmetric GARCH 
(AGARCH) and the popular EGARCH and GJR-GARCH models. 
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Once the models have been fitted to the data, the next step is to 
generate forecasts using the estimated models. In order to select the best 
model, we evaluate the forecasts made by each based on the criteria 
detailed below. An alternative method would be to select the best model 
based on information criteria such as the Akaike or Bayesian, which 
would indicate the best in-sample fit. However, our aim is not to select 
the specification that best models the sample’s volatility, but to select 
whichever makes the best forecasts out of sample. We therefore 
concentrate on the out-of-sample predictive capability of the models 
fitted and not on their in-sample fit. 

4.1. Out-of-Sample Forecast Evaluation 

For the purposes of forecast evaluation, we use each model to 
generate one-step-ahead forecasts of conditional volatility for the six-
month period beginning in January 2007. Once each model has been 
estimated, in making each forecast we use the actual data available up to 
that point as an input into the equation estimated for conditional 
volatility by that model. The choice of the number of forecasts made is 
such that it ensures an adequate number of forecast observations for the 
analysis that is to be carried out. The quality of these forecasts is 
evaluated through the standard evaluation technique of employing loss-
based functions and regression analysis. The chosen model is then re-
estimated using the extended sample (now including 2007), and 
subsequently used to make predictions for the same horizon for the 
following year, i.e., one-step-ahead predictions for the six-month period 
beginning in January 2008 when the crisis hit the US equity market.  

4.1.1. Regression-Based Evaluation 

The first step in evaluating the quality of the forecasts made 
would be to regress the proxy for conditional volatility (RVt) on the 
predicted volatility (ht) from each model. This regression-based approach 
to evaluating out-of-sample forecasts—proposed by Mincer and 
Zarnowitz (1969)—has, however, been criticized in the literature. Pagan 
and Schwert (1990) note that, if the proxy RVt contains large observations 
(outliers), problems arise when these regressions are run using ordinary 
least squares (OLS) because the OLS estimates are disproportionately 
affected by the larger values. Additionally, it “measures the level of 
variance errors rather than the more realistic proportional errors” thereby 
mainly assessing the performance of high values (Engle & Patton, 2001).  
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One solution to these two problems is to use the log of RVt. Such 
log regressions are established as being less sensitive to the problems 
posed by larger observations. Thus, we run the following regression: 

𝑙𝑛𝑅𝑉𝑡 =  𝛼 +  𝛽 ∗ 𝑙𝑛ℎ𝑡 + 𝑢𝑡 (8) 

If the forecasts (ht) are perfect, the intercept (α) should equal 0 and 
the slope (β), 1. A model’s superiority can be established by comparing 
the R2 term—the higher the R2 the better the forecasts explain the actual 
volatility  

4.1.2. Loss Functions-Based Evaluation 

An alternative to the regression analysis above is to assess how 
different the model’s conditional variance predictions are from the proxy 
being used for the true variance. The simplest way of doing this is to 
calculate the mean forecast error (ME), which is 



=

 
= −  
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t t
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The term m represents the number of forecasting observations, 𝑦�𝑡 
is the predicted volatility, and 𝑦𝑡 is the value of 𝑅𝑉𝑡 being used as a proxy 
for actual volatility. The lower the value, the better the forecast. Other, 
more sophisticated statistics that have been developed include a common 
forecast evaluation statistic, the mean squared error (MSE), which is 
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The MSE squares the forecast errors (ŷ𝑡 + ℎ – 𝑦𝑡 + ℎR) and so 
penalizes larger errors more than smaller ones. Corradi and Awartani 
(2005) note that, since 𝑅𝑉𝑡 is measure-free and an unbiased estimator, it 
allows one to compare models in terms of loss functions other than 
quadratic. Thus, we can make use of the mean absolute percentage error 
(MAPE), which is 
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Unlike the MSE, the mean absolute error (MAE) does not penalize 
larger forecast errors more heavily than smaller ones. However, since it takes 
the absolute value, it does not allow the effect of under- and over-predictions 
of the same magnitude but carrying opposite signs to be cancelled out. 

4.1.3. Diebold-Mariano Test 

Diebold and Mariano’s (DM) (1995) test allows one to compare the 
forecasting ability of two models. For one-step-ahead forecasts, let the 
forecast error (ŷ𝑡 + ℎ – 𝑦𝑡 + ℎR) be denoted by g(e). The difference in loss in 
period i from using model 1 versus model 2 is defined as 
𝑑𝑖 = 𝑔(𝑒1𝑖 –  𝑔(𝑒2𝑖). The mean loss is given by 

( )1 2
1

1 / ( )
H

i i
i

H g e g ed
=

 = − ∑  
(12) 

H is the number of forecast errors. The DM statistic is 
asymptotically standard normal when applied to non-nested forecasts, so 
that the t-test can be used to test the null hypothesis that any two fitted 
models have equal predictive abilities, which is when đ = 0. 

/ var( )DM d d=  (13) 

This test is used to determine if there is any statistical difference 
between the forecasts generated by the chosen model before and during 
the crisis. Applying the test requires var(đ). If the di series is uncorrelated, 
var(đ) is given by γ0/(H – 1), else Enders’ (2004) specification is followed 
where var(đ) = (γ0 + 2γ1 + … + 2γq)/H – 1, and γ i denotes the ith auto-
covariance of di where the first q values of γ i are significant. 

5. Empirical Analysis 

5.1. Modeling the Conditional Mean 

The first step in our empirical analysis is to estimate the mean 
equation of returns. In order to identify the best-fitting model, the 
autocorrelogram (AC) and partial autocorrelogram (PAC) are plotted 
(Figure 2) to determine which lags are statistically significant at 5 percent 
(±1.96/√T). Lags 1, 5, 7, 14, and 15 are found to be significant (Table A1 
in the Appendix). Thus, the autoregressive moving average (ARMA) 
(15,15) is estimated using OLS.  
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Next, the estimated model’s standardized residuals3 are verified 
using the Portmanteau/Box-Pierce/Ljung-Box test to evaluate the 
adequacy of the fitted model. The null hypothesis for this test is that the 
errors are white noise. The p-value for the Q-statistic is 0.7126, thus the 
null hypothesis cannot be rejected at a 5-percent level of significance. The 
mean equation, therefore, fits the data. 

Since it is important to check for second-order dependence in the 
residuals (conditional heteroscedasticity), we use Engle’s (1982)  
Lagrange Multiplier test to check for serial correlation. This entails 
running OLS regression of the squares of the residuals on its own lags. 
The null hypothesis proposes that there is no ARCH effect, i.e., that the 
coefficients should all be jointly 0. The p-value yielded is 0.00, thus we 
can confidently reject the null hypothesis and conclude that there are, in 
fact, ARCH disturbances in the returns series.  

Figure 2: Autocorrelogram and partial autocorrelogram of Rt series 

 

 
Source: Author’s calculations. 
                                                 
3 Residuals divided by standard deviation.  
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A further check is to apply the Portmanteau test to the squared 
standardized residuals. The null hypothesis proposes that the errors are 
not serially correlated, i.e., that there are no ARCH effects. As above, a p-
value of 0.000 allows us to confidently reject the null hypothesis and 
confirm the presence of ARCH disturbances in the data. Both tests prove 
that the variance is conditional on the past period, implying that we need 
to fit a model that can account for this effect. 

5.2. Modeling the Conditional Volatility 

The GARCH family of models adequately takes into account the 
presence of conditional heteroscedasticity, and these models are 
estimated in order to model volatility. Table 2 reports estimates of the 
maximum likelihood estimator parameters. 

Table 2: Maximum likelihood estimation results 

 GARCH (1,1) EGARCH (2,1) AGARCH (1,1) GJR-GARCH (1,1) 

α0 7.74e-07 
(4.39e-07) 

–0.0760587 
(0.0370346)* 

8.48e-07 
(3.19e-07)* 

5.03e-07 
(2.52e-07)* 

β1 0.9376958 
(0.0179654)* 

0.9922645 
(0.0037748)* 

0.9487258 
(0.0148996)* 

0.9562212 
(0.0139044)* 

α1 0.0470485 
(0.0124951)* 

–0.239826 
(0.0430449)* 

0.0356606 
(0.0113298)* 

0.0690447 
(0.0150748)* 

γ1 - –0.2274885 
(0.0781236)* 

–0.0005019 
(0.0001111)* 

0.0718498 
(0.0165285)* 

α2 - 0.1741572 
(0.0421315)* 

- - 

γ2 - 0.2901534 
(0.079057)* 

- - 

Note: * = statistically significant at 1 percent. Standard errors are given in parentheses. 
Source: Author’s calculations. 

We begin estimating the model using the most parsimonious 
specification, the GARCH (1,1). If the model is a good fit, it should be able 
to capture the serial correlation and no ARCH effects should remain. The 
p-value of the Q-statistic for the squared standardized residuals is 0.1284. 
Thus, we cannot reject the null hypothesis, implying that they are no 
remaining ARCH effects, and that the model of variance has been 
adequately fitted. A p-value of 0.3934 yielded by the Lagrange Multiplier 
test further confirms this since it allows us to accept the null hypothesis of 
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no remaining ARCH effects. The sum β1 + α1 equals 0.96, which is less 
than 1 and satisfies the condition for stationarity. The results show that 
the coefficient of the lag of conditional variance, β1 (0.94), is quite high, 
indicating the persistence of past effects.  

As noted earlier, financial time series are characterized by the 
presence of leverage effects. Testing for this phenomenon entails 
regressing squared standardized residuals on the lags of standardized 
residuals, resulting in a p-value of 0.0007. This allows us to confidently 
reject the null hypothesis and conclude that the coefficients are not jointly 
equal to 0. It thus confirms the presence of leverage effects in the data. A 
further test involves the use of a dummy to signal any negative shocks 
that may have occurred in the previous period. When the squared 
standardized residuals are regressed on the dummy, its coefficient turns 
out to be significant (a p-value of 0.020). This is conclusive proof that 
negative shocks do, in fact, increase the conditional variance, as reported 
in the existing literature (see Corradi & Awartani, 2005; Taylor, 2004). 

The next three models to be fitted formally account for this 
asymmetric effect in addition to the phenomena of volatility clustering 
and excess kurtosis. The first is the GJR-GARCH (1,1), which employs 
an indicator function that emerges when there is a negative shock in the 
past to account for the asymmetries. Table 2 shows that the coefficient of 
the indicator function γ1 is significant and positive, implying that there 
are asymmetric effects. The p-value of the Q-statistic for the squared 
standardized residuals of this model is 0.9445. This signals that the null 
hypothesis cannot be rejected at a 5-percent level of significance. The 
GJR-GARCH (1,1) thus adequately models the second-order moment of 
the series.  

The EGARCH (1,1) model is fitted next (Table A2 in the 
Appendix). The γ1 coefficient appears to be insignificant, and the p-value 
yielded by the test that is applied to the model’s squared standardized 
residuals is 0.000, implying that the null hypothesis can be rejected. 
Hence, the residuals are not white noise, and the model is not deemed an 
adequate fit. When a higher-order specification, the EGARCH (2,1), is 
fitted (Table 2), however, all the coefficients emerge as significant. The 
Portmanteau test confirms that the residuals are white noise (the p-value 
is 0.34). The parameter β1 is equal to 0.99, i.e., less than 1, thus satisfying 
the condition for the process being stationary.  
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The AGARCH (1,1) model, which is fitted next, modifies the term 
that captures shocks that have occurred in previous periods. The 
estimates yielded confirm the presence of leverage effects since γ1 is 
significant and negative. The standardized squared residuals are checked 
to ensure that no autocorrelation remains, and thus no additional lags are 
required. The p-value is 0.54, which does not allow us to reject the null 
hypothesis at a 5-percent level of significance, implying that a higher-
order specification is not needed. All the coefficients are statistically 
significant with a β1 that is close to 1, indicating persistent volatility. 

5.3. Forecast Evaluation 

Using five-minute-interval intraday return data, we construct RVt 
estimates for six months that will act as a proxy for true (unobserved) 
volatility. This entails making one-step-ahead forecasts using each of the 
four models in order to evaluate the out-of-sample forecasts. The first 
stage of the evaluation process employs the loss function-based 
evaluation technique, with RVt acting as a benchmark (Table 3). The 
lower the value of the criteria estimated using a particular model’s 
forecasts, the better the forecasts. In the second stage, we carry out a 
regression analysis to verify the results obtained in the first stage.  

Table 3: Loss function values for one-step-ahead predictions 

Criterion GARCH EGARCH AGARCH GJR-GARCH 

ME –9.44887E-06 –2.106E-05 –1.15222E-05 –3.61821E-06 

MSE 4.93968E-09 5.71367E-09 5.10746E-09 4.81257E-09 

MAPE 0.868947666 0.626980967 0.795054713 0.983587439 

Source: Author’s calculations. 

The value of the ME and MSE criteria is lowest in the case of the GJR-
GARCH (1,1) model, with the GARCH (1,1) a close second in both. 
However, when the MAPE is taken into account, the EGARCH (2,1) emerges 
as the superior model. Thus, all three criteria indicate that the asymmetric 
models are superior. These results are in accordance with Corradi and 
Awartani (2005) who found that the asymmetric models dominated the 
GARCH (1,1) specification in making one-step-ahead forecasts. 
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After running log regressions of RVt on the forecasted variance 
series4 (see results in the Appendix), we check to see if the coefficients are 
statistically close to 1. The p-values of the GARCH (1,1) and AGARCH (1,1) 
coefficients are 0.02 and 0.00, respectively, which allows the null 
hypothesis to be rejected at a 5-percent level of significance, and implies 
that the coefficients are different from 1. However, the p-value of the GJR-
GARCH (1,1) coefficient is 0.31 and that of the EGARCH (2,1) is 0.3559, 
which does not allow us to reject the null hypothesis, and suggests that 
these coefficients are not statistically different from 1. This is in synch with 
the results obtained from the loss function criteria, which also showed that 
the estimates of these two models are superior to those of the other two. 

The adjusted R2 values (Table 4) of the regression of log RVt on 
the log of the forecasts show that the R2 of the AGARCH (1,1) model is 
the lowest. The model’s estimates appear to perform poorly on all criteria, 
confirming its poor predictive ability. The R2 of both the GARCH (1,1) 
and GJR-GARCH (1,1) models is close to 42 percent, with the EGARCH 
(2,1) at 36 percent. This higher R2 further supports the superiority of the 
GJR-GARCH (1,1) model over the EGARCH (2,1), which has a better 
MAPE measure. We can therefore proceed with the GJR-GARCH (1,1) 
model as the model with the best forecasting ability.  

Table 4: Adjusted R2 from regressions of log RVt on log of predicted 
values 

 AGARCH GARCH GJR-GARCH EGARCH 

R2 0.3062 0.4255 0.4119 0.3603 

Source: Author’s calculations. 

The next step is to extend the in-sample period from December 
2006 to December 2007, and estimate the chosen model, the GJR-GRCH 
(1,1), based on this sample (Table A2 in the Appendix). The effect of 
positive news on conditional volatility is given by α1 + γ1, the previous 
value of which was 0.0028 and is now 0.0057. All coefficients are still 
statistically significant. It is important to check if the model is an 
adequate fit. The p-value of the Q-statistic is 0.8276, verifying that the 
squared standardized residuals are white noise and that the model, 
therefore, fits the data. 

                                                 
4 The volatility forecast series is tested for the presence of a unit root. If the series is nonstationary, the 
regression is spurious and yields meaningless coefficients. The null of nonstationarity is rejected at a 
5-percent level of significance. 
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The selected model is then used to generate one-step-ahead 
forecasts for six months, which are compared with the out-of-sample 
forecasts that were made for the pre-crisis period. As before, RVt is used 
as a benchmark against which to evaluate the forecasts. By January 2008, 
the impact of the subprime mortgage crisis had begun to show in the 
equity market, and the S&P 500 index had started to decline. As expected, 
Table 5 shows that the values of all three evaluation criteria for all 
horizons have increased relative to 2007.  

Table 5: Loss function values for 2007 and 2008 forecasts from GJR-
GARCH model 

Year ME MSE MAPE 

2007 –3.61821E-06 4.81257E-09 0.983587 

2008 –1.9694E-05 4.23284E-08 1.324632 

Source: Author’s calculations. 

This signals worsened forecasting, which is not surprising given 
that crisis periods are more volatile than usual, which is why predicting 
becomes more difficult. However, a regression analysis of these forecasts 
yields an R2 that has increased to 43 percent, lending support to the 
model’s forecasting ability during the turbulent period. 

The DM test is used to determine if there is any statistically 
significant difference between the model’s forecasting ability in the two 
periods. The DM statistic yielded is 0.875, which is less than 1.96, 
implying that we cannot reject the null hypothesis at a 5-percent level of 
significance. Thus, there is no statistical difference between the model’s 
forecasting ability in terms of period type—it is equally capable of 
predicting volatility for a crisis period and a normal period. The increased 
volatility that characterizes a crisis period is adequately accounted for. 
Moreover, the model fitted takes special account of leverage effects and 
thus effectively handles the downturn in index returns. 

6. Conclusion 

Based on an out-of-sample evaluation of the forecasts made by the 
four GARCH models, the model that best estimates daily returns 
volatility is the GJR-GARCH (1,1) model—in accordance with the 
findings of Corradi and Awartani (2005) and Taylor (2004)—when 
applied to the in-sample period from January 2003 to December 2008, 
which is characterized by relative tranquility. 
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Having selected the best model based on several evaluation 
criteria, the in-sample period is then extended up to December 2007 and 
the model is re-estimated. The one-step-ahead forecasts for six months 
obtained from this re-estimated model are compared to the prior forecasts 
obtained. This meets our second aim—to assess the model’s ability to 
cope with the pronounced volatility characterizing the recent crisis that 
hit the US equity market. We have found that, while the model’s 
predictive ability decreases, there is no substantial change. This supports 
the ability of the GJR-GARCH model in particular and of the asymmetric 
GARCH family of models in general to remain relatively robust across 
periods of pronounced volatility. 

While we have used high-frequency data to construct an RV 
measure as a proxy for unobserved true volatility, to the presence of 
market microstructure noise meant that intraday returns were not 
aggregated at greater-than-five-minute intervals. This proxy could thus 
be further refined by increasing the sampling frequency and by explicitly 
accounting for the jumps and patterns that arise during the day when 
intraday data is used.  

Other avenues of research could make use of the implied volatility 
that is extracted from options written on the index for further insight into 
how volatility forecasts are affected during crisis periods. Additionally, 
the stochastic volatility model, which has been found to be more flexible 
than ARCH-class models and to “fit financial market returns better and 
have residuals closer to standard normal” (Poon & Granger, 2003), has 
not been estimated here due to computational difficulties. Further 
research could use this model for detailed analyses analysis based on 
several modeling techniques. 
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Appendix 

Figure A1: Histogram of Rt series with normal curve imposed 

 
Source: Author’s calculations. 

Table A1: AC and PAC values for Rt series 

LAG AC PAC 

1 –0.0801  –0.0802 

2 –0.0395  –0.0462 

3 0.0241 0.0174 

4 0.0349  0.0371 

5 –0.0662  –0.0598 

6 0.0171  0.0171 

7 –0.0999  –0.1054  

8 0.0200 0.0062 

9 –0.0289 –0.0312 

10 –0.0395  –0.0462 

11 0.0241 0.0174 

12 0.0600  0.0455  

13 0.0059  0.0202  

14 0.0683  0.0644  

15 –0.0793  –0.0689  

16 0.0129  –0.0034  

Source: Author’s calculations. 
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Table A2: Estimation results 

Parameter EGARCH (1,1) GJR-GARCH (1,1) 

α0 –18.48361 
(0.000)* 

1.05e-06 
(0.000)* 

β1 0.9376958 
(0.000)* 

0.9439015 
(0.000)* 

α1 –0.0330587 
(0.122) 

0.0808454 
(0.000)* 

γ1 –0.0181544 
(0.455) 

–0.0865688 
(0.000)* 

Note: * = significant at 1 percent; p-values are given in parentheses. 
Source: Author’s calculations. 
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