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Abstract 

This study attempts to model and forecast the volatility of light, sweet, 
crude oil futures trading at the NYMEX during 1998–2009, using various models 
from the ARCH family. The results reveal that the GJR-GARCH (1,2) model is 
best suited to forecast purposes. The fitted models also suggest the presence of 
asymmetric effects in the data. The study also reveals that trading volume and open 
interest do not reduce the persistence of volatility for these oil futures. 
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1. Introduction 

Extensive research has been conducted on modeling volatility 
clustering in financial markets, using different econometric techniques. 
Volatility modeling is a key area of interest to researchers because it plays 
an important role in managing risk, pricing derivatives, hedging, 
selecting portfolios, and policymaking. “Investors and portfolio managers 
have certain levels of risk which they can bear. A good forecast of the 
volatility of asset prices over the investment holding period is a good 
starting point for assessing investment risk” (Poon & Granger, 2003). 
Accurate volatility forecasts are thus very important and, over time, have 
motivated new approaches to volatility modeling to help forecast future 
volatility for asset pricing and risk management purposes. 

Although most research on volatility modeling has focused on 
equity markets (see, for instance, Bollerslev, Chou, & Kroner, 1992; Pagan 
& Schwert, 1990) and foreign exchange markets, the success of a 
particular type of forecasting model applied to one type of market cannot 
be generalized across other markets (see Sadorsky, 2006). There has been 
relatively less research on futures markets, and only in recent years has 
volatility modeling for these markets gained popularity. With futures 
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gaining increasing importance in terms of assessing and managing risk, it 
has become important to work with the relevant models to forecast 
volatility. Futures are especially seen to display particular features that 
differentiate them from other financial tools, in that they are high-risk 
volatile investment tools in which a small price movement can have a 
huge impact on trading (see Carvalho, da Costa, & Lopes, 2006).  

Futures markets merit further attention, especially given their 
growing use for hedging purposes. Investors and economic agents who 
trade in physical spot commodities may wish to hedge the price risk of 
commodities, and this is one of the primary reasons for the development of 
commodity futures. Although futures markets exist for all sorts of 
commodities—including metals, agricultural goods, and animal 
products—their most actively traded commodity is crude oil followed by 
its various derivatives such as heating oil and gas, etc. This is not 
surprising since oil and its derivatives are important factors of production 
in the world’s economies, and oil price fluctuations can significantly affect 
their performance.  

In the past, the spot prices of crude oil have been affected both by 
economic and geopolitical events. Examples include the price falls in 1998 
that occurred due to a slowdown in Asian economic growth, and the 
price rise caused by OPEC’s curtailed oil supply in 2000/01 and by US 
military action in Iraq in 2003 and after (see Kang, Kang, & Yoon, 2009). 
Ample research shows that oil price volatility has significant 
macroeconomic effects. While Ferderer (1996) and Lee, Ni, and Rutti 
(1995) investigate these macroeconomic impacts without stock market 
variables, Sadorsky (1999) uses vector autoregression (VAR) to show that 
oil price volatility has a significant impact on stock price volatility as well. 
Hence, the study of oil price volatility is important because it impacts 
macroeconomic variables such as aggregate output and employment both 
in countries and financial markets worldwide. 

With developments in financial markets and the increased use of 
hedging techniques to manage risk, there has been tremendous growth in 
the use of both over-the-counter and exchange-traded derivatives to 
manage risk related to the volatile energy sector. Oil futures are one such 
example, the trading of which began in 1978 on the New York Mercantile 
Exchange (NYMEX). The light, sweet, crude oil futures contract traded on 
the NYMEX is used as a key international pricing benchmark due to its 
liquidity and price transparency.  
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With crude oil being the world’s most actively traded commodity, 
its futures on the NYMEX provide the world’s most liquid forum for 
crude oil trading and account for the largest futures contract trading on a 
physical commodity in terms of volume. Owing to the importance both of 
oil and emerging futures markets, and given that futures markets are 
relatively less well researched than others, modeling and forecasting the 
volatility of these futures can prove a worthwhile exercise.  

The structure of this article is as follows. Section 2 provides a brief 
overview of the existing literature, Section 3 describes the data used in 
this study, Section 4 details the methodology, Section 5 presents empirical 
results, and Section 6 concludes the study. 

2. A Review of the Literature  

Engle’s (1982) classic study was the first to distinguish between 
unconditional and conditional variance, and introduced a technique for 
simultaneously modeling both the mean and variance of an economic or 
financial time series, using the autoregressive conditional heteroscedastic 
(ARCH) model. Subsequently, Bollerslev (1986) introduced a parsimonious 
representation of Engel’s model, followed by a number of studies that 
proposed and tested variants of the ARCH model, while accounting for 
asymmetries and persistence. Poon and Granger (2003) noted that, at the 
time of their study, at least 93 published and working papers had studied 
the forecasting performance of volatility models while many others had not 
incorporated the forecasting aspect. They also pointed out that models that 
allowed for asymmetric effects were able to provide better forecasts owing 
to the negative relationship between volatility and shocks. Other variants 
of the ARCH model included the multivariate generalized ARCH 
(GARCH) approach (see Brooks & Persand, 2003).  

While these studies focus on equity and foreign exchange 
markets, others have attempted to model the volatility of commodities in 
the futures market. Bracker and Smith (1999) study the volatility of the 
copper futures market, and conclude through its root mean squared error 
(RMSE) that both the GARCH and exponential GARCH (EGARCH) 
models best fit the market’s volatility, followed by the Glosten-
Jagannathan-Runkle (GJR) model.1 Carvalho et al. (2006) devise a 
systematic modeling strategy for futures markets in general and apply it 
to soya beans futures. Of eight different ARCH family models, they find 
                                                 
1 The choice of model depends on the series of prices used; here, the authors have used daily data 
for a 10-year period up to 1999. 
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evidence of asymmetric effects when using the EGARCH as their selected 
model (according to the mean squared prediction error (MSPE) and mean 
absolute prediction error (MAPE) criteria). They claim their methodology 
to be independent of the type of market and applicable to all commodities 
in the futures market. Application to wheat and corn futures reveals that 
the quadratic GARCH (QGARCH) and threshold GARCH (TGARCH) 
specifications, respectively, are best suited. Brooks (1998) models the 
volatility of Kuala Lumpur crude palm oil futures and, apart from daily 
and monthly effects, finds significant evidence of the impact of open 
interest and volume when using GARCH models to estimate volatility. 

Some studies have focused on the volatility of crude oil futures 
traded on the NYMEX. Sadorsky (2006) uses data up to 2003, choosing a 
TGARCH model for heating oil and gas and a GARCH model for crude 
oil and unleaded gasoline. The study not only shows that the GARCH 
family models outperform random walk, historical mean, and 
exponential smoothing models, but that single-equation GARCH models 
better model volatility than VAR and bivariate GARCH models. More 
recently, Kang et al. (2009) study volatility modeling for three crude oil 
markets—Brent, Dubai, and West Texas Intermediate (WTI). Using data 
up to 2006, they conclude that the component GARCH (CGARCH) or 
fractionally integrated GARCH models made better forecasts for the three 
series than a simple GARCH model.  

Agnolucci (2009) uses data up to 2005 to compare the predictive 
ability of GARCH and implied volatility models for oil futures traded on 
the NYMEX, and concludes that former seem to perform better than the 
latter (which are obtained by inverting the Black-Scholes equation). For 
forecasting purposes, however, Agnolucci suggests that, in contrast to 
Sadorsky (2006), the CGARCH model performs better than the GARCH 
model. The difference in their two conclusions could be attributed to the 
different time frame and forecast evaluation techniques used. 

Other studies have included the effect of trading volume and open 
interest in the GARCH processes as a proxy for the arrival of information. 
Clark (1973) first introduced the mixture-of-distributions hypothesis 
(MDH), which explored the role of trading volume in stock price 
movements. Lamoureux and Lastrapes (1990) use the daily returns and 
volumes of 20 actively traded stocks in the US market to test the relation 
between conditional variance and trading volume by deriving a GARCH 
effect. They find that volatility persistence disappears when daily trading 
volume is added to the conditional variance equation. Brailsford (1996) 
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uses the GARCH process to investigate the effect of trading volume on 
the persistence of volatility in the Australian stock market, finding that it 
significantly reduces persistence. Using data on 10 actively traded US 
stocks, Gallo and Pacini (2000) put forward similar findings, as do Pyuna, 
Lee, and Nam (2000) in the case of the Korean Stock Exchange.  

In contrast, some studies have found that trading volume has 
little, if any, effect on the persistence of market volatility. Sharma, 
Mougous, and Kamath (1996) use data on the New York Stock Exchange 
index, and argue that that trading volume does not completely explain 
the GARCH effect for the market index and that volatility persistence did 
not diminish on adding volume (see also Brooks, 1998). Darrat, Rahman, 
and Zhong (2003) use the EGARCH model to test Dow Jones industrial 
average (DJIA) stocks, and find significant contemporaneous correlations 
between trading volume and volatility in only three of 30 DJIA stocks.  

Researchers such as Najand and Yung (1991) recommend adding 
a lagged volume variable, and testing to ensure avoidance of any 
specification bias. Bessembinder and Seguin (1993) extend this line of 
research and analyze the roles of open interest and volume in 
determining volatility in eight futures markets; they conclude that both 
variables significantly impact volatility. Foster (1995) examines the 
volume-volatility relationship for crude oil futures trading on the 
NYMEX, arguing that volume does not remove the GARCH effect and 
that previous volatility better explains volatility—this implies that 
volume does not represent the rate of information arrival for oil futures. 

The present study attempts to model the volatility of returns on 
light, sweet, crude oil futures traded on the NYMEX by employing the 
ARCH model and its variants and extensions. We present both in- and 
out-of-sample forecasts of volatility, and use techniques based on past 
research to assess which model best forecasts volatility. We also attempt 
to update previous research by using data up to July 2009. The 
asymmetric modeling of these futures has not been studied in such detail, 
and thus adds to the existing body of research by assessing dynamic 
forecasts. We also add volume and open interest as independent variables 
to ascertain if trading activity has a significant effect on volatility. 
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3. Data 

3.1. Sources of Data 

The data required is the returns on the light, sweet crude oil 
futures traded on the NYMEX. In order to calculate these returns, we use 
data on the daily price of these futures, obtained from the Bloomberg 
database (the use of daily data for this study is in line with the literature 
discussed earlier). Data pertaining to the volume and open interest of the 
futures contract is also obtained from the Bloomberg database. The price 
taken as the daily price is the last trading price of the day (see 
http://www.nymex.com/CL_spec.aspx for details of contract). Data on 
futures prices spans the period from 23 June 1998 to 16 July 2009—a total 
of 2,780 observations. Of these, we use the data ranging from 23 June 1998 
to 23 February 2009 for modeling purposes, i.e., a total of 2,680 
observations, which is sufficient for modeling daily returns. The 
remaining 100 observations are treated as an out-of-sample period in 
order to assess the forecasts made.2 

3.2. Description and Testing 

The plotted autocorrelation and partial autocorrelation of the 
price of the futures contract indicate that the series is nonstationary 
(Figures A1a and A1b in the Appendix). Applying the Dickey-Fuller test 
to the series confirms this (Table A1 in the Appendix), and suggests that it 
cannot be used to model volatility. 

Returns rather than prices are more appropriately used here, first, 
because our aim is to model the volatility of returns on oil futures, and 
second, because a returns series is more likely to be stationary and thus 
more suitable for modeling than a price series. The returns are calculated 
by applying the first difference of the log of prices. Table 1 summarizes 
the statistics on returns, showing that oil futures have an average daily 
return of 0.05503 percent and a standard deviation of 0.02616, which 
indicates an average annualized volatility of 41.53 percent. The skewness 
coefficient is –0.2203, its sign being common to most financial time series. 
The kurtosis value is higher than 3, implying that the returns distribution 
has fat tails. The ARCH family of models should, therefore, be used to 
account for these characteristics of the data. 

                                                 
2 We have used STATA software to model all specifications by maximum likelihood, and assume 
the underlying distribution to be normal. 
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Table 1: Summary statistics for returns 

Returns 

Mean Standard deviation Variance Skewness Kurtosis 

0.0005503 0.0261624 0.0006845 –0.2203233 6.805797 

Source: Author’s calculations. 

It is imperative when modeling such a series that it be stationary 
and the data mean-reverting. For this purpose, the Dickey-Fuller test is 
applied to the returns series (Table A2 in the Appendix), and the results 
show that the series is stationary. On application, the Phillips-Perron test 
also indicates that the series is stationary and can be used for modeling 
purposes (Table A3 in the Appendix). 

The plotted autocorrelation and partial autocorrelation of squared 
returns indicate dependence and, hence, imply time-varying volatility 
(Figures A2a and A2b in the Appendix). This is further supported by the 
q test for squared returns, which also suggests that is the series is time-
dependent. 

4. Methodology 

In order to model the volatility of the returns, we need to 
determine their mean equation. The return for today will depend on 
returns in previous periods (autoregressive component) and the surprise 
terms in previous periods (moving order component). Plotting the 
autocorrelation and partial autocorrelation of the returns series can help 
determine the order of the mean equation. 

Like most financial time series, the returns series exhibits what is 
referred to as “volatility clustering” (Figures A3a and A3b in the 
Appendix), i.e., it exhibits alternating periods of relative tranquility and 
unusually large volatility. In order to model such patterns of behavior, 
the variance of the error term is allowed to depend on its history. The 
classic model of such behavior is the ARCH model introduced by Engle 
(1982), which simultaneously models the mean and variance of a series.  

For this purpose, if we assume yt to be the returns series and It–1 to 
be the information set available, then 

 

yt = E[yt It −1]+ε t  
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E [.] is the expectations operator and represents the predictable 
part of the returns, while εt is the unpredictable part and is given by 

 

ε t = yt − βxt  

xt is the set of explanatory variables and β is the set of parameters 
from a linear regression in vector form. The expected value of εt is 0, and 
its values are serially uncorrelated. Engle (1982) argued that, if we assume 
that for a time series the forecast of today’s value based on past 
information is simply E (yt | yt–1), then the forecast for yt depends on the 
value of the conditioning variable yt–1 and the variance of this one-period 
forecast is given by (yt | It–1, yt–1). Engel therefore proposed a model 
under these assumptions in which the variance did depend on past 
information unlike the conventional models present of the time. The 
ARCH model simultaneously models the conditional mean and variance 
of a time series with the conditional heteroscedasticity of the 
unpredictable part of the series modeled as 

 

ε t = zt ht  

ht is a nonnegative function and zt is an i.i.d stochastic process 
with a zero mean and unit variance. From this, it follows that the 
conditional mean of εt is 0 and its variance is ht, implying that εt is a 
heteroscedastic process. Given this information about εt, it can easily be 
seen that the mean of a series yt, conditional on the past information set is 
E (yt | It–1) and the variance is ht. Engel proposed the following 
specification for the process ht: 

 

ht = α0 + α1ε t −1
2 + α2ε t −2

2 + αqε t −q
2 = α0 + α iε t −1

2

i=1

q

∑  

αi’ s ≥ 0 and i = 1..., q are constant parameters. This is the so-
called ARCH (q) model. As the primary model introduced for modeling 
volatility, this will be the first model on which we fit our returns series. 
However, the ARCH model often needs a higher-order q to capture the 
volatility of a financial time series and, hence, requires estimating many 
parameters. As Bollerslev (1986) points out, “In empirical applications of 
the ARCH model a relatively long lag in the conditional variance 
equation is often called for, and to avoid problems with negative variance 
parameter estimates a fixed lag structure is typically imposed.” His 
solution to this problem was the generalized ARCH (GARCH) model, 
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which allows both a more flexible lag structure and a longer memory 
relative to ARCH specification. As opposed to the ARCH model, the 
GARCH model’s specification also includes lagged conditional variances. 
In general, a GARCH (p, q) model is given by 

 

ht = α0 + α iε t − i
2

i=1

q

∑ + βiht − i
i=1

q

∑  

α and β are the parameters to be estimated, p is the number of lags 
for past variances, and q is the number of lags for past squared residuals. 
The GARCH model thus allows both autoregressive and moving-average 
components in heteroscedastic variance. It gives a more parsimonious 
representation of the ARCH model and is much easier to identify and 
estimate. The GARCH model is, therefore, the second model that will be 
fitted to the data.3 

Realistically speaking, if “bad news” has a more pronounced 
effect on volatility than “good news” of the same magnitude, then a 
symmetric specification such as ARCH or GARCH is not appropriate 
since in standard ARCH/GARCH models the conditional variance ht is 
unaffected by the sign of the past periods’ errors (it depends only on 
squared errors). Various extensions have therefore been proposed to 
capture these asymmetric effects often shown by financial time series.  

Before applying the asymmetric models, however, one needs to test 
for the presence of such effects. Engle and Ng (1993) propose various tests 
to detect the presence of asymmetric effects, which are run on the 
standardized residuals of the GARCH model. The sign bias test is given by 

 

ˆ ε t
2 = α0 + α1St −1

− + error  

 

St −1
−  = 1 when 

 

ˆ ε t −1
2  < 0, and 0 otherwise. If the dummy variable’s 

coefficient is significant and positive, this suggests the presence of 
asymmetric effects. The negative sign bias test determines whether the 
size of the negative shock also affects the impact it has on conditional 
variance, and is given by 

 

ˆ ε t
2 = α0 + α1St −1

− + ˆ ε t −1 + error  

                                                 
3 We also estimate the GARCH in the mean form of the GARCH model, which allows the ARCH 
component in the specification of the mean equation. 
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For the existence of a size effect, the coefficient must be negative 
and significant. The positive sign bias test determines if the size of a 
positive shock impacts its conditional variance, and is given by 

 

ˆ ε t
2 = α0 + α1St −1

+ + ˆ ε t −1 + error  

 

St −1
+   

 

St −1
− . For the size effect to be present, the coefficient must be 

negative and significant. If the tests above indicate the presence of 
asymmetric effects, then the ARCH/GARCH models are no longer 
deemed appropriate and their other variants need to be considered. 

The first model to account for such effects was the EGARCH 
model proposed by Nelson (1991). It uses a logarithmic function to treat 
asymmetric effects, and is given by 

 

Ln(ht ) = α0 + α i |
ε t − i

ht − i

 

 
  −

i=1

q∑ 2
π

 

 
 − γ i

ε t − i

ht − i

 

 
  

 

 
  i=1

q∑ + βi lni=1

p∑ (ht − i)  

In this case, the logarithmic function ensures that the conditional 
variance is positive and, therefore, the parameters can be allowed to take 
negative values. The specification implies that the impact of past errors is 
exponential, unlike standard GARCH models that imply that the effect is 
quadratic. If the shock is positive, its effect on the log variance is α1 + γ 
while the effect is α1 – γ if the shock is negative. For significant 
asymmetric effects, therefore, the coefficient γ should take a negative sign.  

Unlike the EGARCH model, Glosten, Jagannathan, and Runkle’s 
(1993) eponymous model does not look at exponential values but 
assumes that the impact of squared residuals on the variance depends on 
whether the residual term is negative or positive. For this purpose, it 
employs an indicator function as follows: 

2
1

2
110 itit

q

i iit
q

i i
p

i itit Shh −
+
−=−== − ∑∑∑ +++= εγεαβα  

The indicator function 

 

St − i
+  takes a value of 1 if εt–i> 0, and 0 

otherwise. For the effect of the previous period’s bad news to be greater 
than the effect of good news of the same magnitude, γshould be 
significant and have a negative sign.  

Zakoïan’s (1994) threshold ARCH (TARCH) model is given by 
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−
−

+
−== − +++= ∑∑ itiit

q

i i
p

i itit hh εγεαβα
11

2/1
0

2/1  

ε+ = max(ε, 0) and ε– = min(ε, 0). The effect of good and bad news 
is captured separately through the two coefficients, α and γ, respectively. 
Unlike the GJR model where the indicator function becomes 0 in the case 
of a negative shock, the TARCH model adds a separate variable for 
negative shocks. Another variant of the TGARCH model mentioned by 
Zakoïan (1994) and applied by Taylor (1986) and Schwert (1989) takes 
into account the effect of the shock’s size on volatility, and is given by 

it

q

i
iit

p

i
it hh −

=
−

=
∑∑ ++= εαβα

1

2/1

1
0

2/1  

Our aim is to determine how well these different models perform 
in terms of forecasting volatility and will be assessed based on the 
forecasts they make. The forecasting approach used is such that the last 
100 observations of the sample are used to assess out-of-sample forecasts. 
We will make dynamic forecasts for these models, i.e., estimate the 
models using the first 2,680 observations and make one-step-ahead 
predictions for the variance of these observations in a static manner by 
employing the original value of the variance right up to the point of 
prediction. For the next 100 observations, we will make dynamic 
predictions, i.e., the predicted value of the variance will be used 
recursively to make subsequent observations. As an example, the 
dynamic forecasts for the GARCH (1,1) model would be 

tttttt hIEh 1
2

10
2

1/1 )(ˆ βεααε ++== ++  

This predicted value of the variance is used to predict the variance 
of subsequent observations as 

tttttttttt hhIEIEh /1110/11
2

110
2

2/2
ˆ)(ˆ)()(ˆ

+++++ ++=++== βααβεααε  

tttttttt hIEIEh /21
2

210
2

3/3
ˆ)()(ˆ

++++ ++== βεααε  

)ˆ)()(( /1110110 tth +++++= βααβαα  

Likewise, we use the other models’ respective equations to obtain 
volatility forecasts. Once the forecasts have been made, the next step is to 
evaluate them. For comparison purposes, we compare out-of-sample 
forecasts with historical volatility. Volatility is itself a latent variable and 
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thus its value can only be approximated. Previous studies on oil volatility 
have used daily squared returns from market prices as a proxy (see 
Agnolucci, 2009; Sadorsky, 2006). Moreover, since the historical volatility 
figure is used for comparison purposes only, using it as a proxy does not 
cause problems because it is unbiased (Lopez, 2001). 

We will follow the standard techniques used by earlier studies, 
including Brailsford and Faff (1996), to assess the models’ forecasting 
performance: 

RMSE ∑ =
−=

m

hm 1
222 )ˆ(1 σσ  

MAPE [ ]∑ =
−






 m

hm 1
222 /)ˆ(1100 σσσ  

Mean absolute error (MAE) = ∑ =
−






 m

hm 1
22 )ˆ(1 σσ  

While the first measure depends on the scale of the forecast, the 
second is scale-invariant. Unlike the MAE and MAPE, the RMSE 
penalizes larger forecast errors more than smaller ones since it squares 
them. Since the MAE and MAPE use absolute values, they have the 
advantage of not letting the effect of under- and over-predictions of the 
same size cancel out. 

Once we have selected the best model based on these measures, 
we can determine the impact of trading activity on volatility through 
trading volume and open interest. Following Lamoureux and Lastrapes 
(1990), we will add volume to the volatility equation as an explanatory 
variable to help assess the impact. For example, the GARCH model’s 
volatility equation would become 

tit

p

i
iit

q

i
it Vhh γβεαα +++= −

=
−

=
∑∑

1

2

1
0  

In order to avoid the effects of any contemporaneous relationship 
between volume and volatility, and in line with previous research, we 
will also test the model with lagged volume.4 Since open interest is also 

                                                 
4 

11
2

10 −−=−=
+++= ∑∑ tit

p

i iit
q

i it Vhh γβεαα  
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considered a proxy for trading activity, the model will also be tested with 
open interest replacing the volume variable. This approach can be 
generalized for all the models applied to determine whether trading 
activity reduces volatility persistence and impacts volatility. 

Empirical Findings 

As described in Section 4, our first step is to identify the mean 
equation for the returns. The autocorrelation and partial autocorrelation 
function for the returns show that autocorrelations and partial 
autocorrelations up to the fifth lag are significant (Figures A3a and A3b in 
the Appendix). We, therefore, propose using an autoregressive moving 
average (ARMA) (5,5) mean equation to model volatility in the ARCH 
models. The estimated ARMA (5,5) equation for the mean is found to be 
significant with a Wald statistic of 799.98 and significant t-values for the 
coefficients. The residuals of the mean equation indicate the absence of 
autocorrelation through the q statistic (Figures A4a and A4b in the 
Appendix). The ARMA (5,5) model is thus deemed an appropriate model 
for the mean equation. 

The q statistic implies that there is second-order dependence in the 
squared residuals of the mean equation and, hence, the presence of 
conditional heteroscedasticity in the returns (Figures A5a and A5b in the 
Appendix). Further, the ARCH-Lagrange Multiplier (LM) test gives a 
Chi-squared value of 75.46, confirming the presence of ARCH effects and 
the need to model this conditional heteroscedasticity using the ARCH 
family models (Table A4 in the Appendix).  

Table 2 presents the results of the models fitted to the data on 
returns. We do not estimate the ARCH model, the idea being that the 
GARCH model is a more parsimonious version of higher-order ARCH 
models. With the ARMA (5,5) as the underlying mean equation, 
estimating the GARCH (1,1) model reveals that the t-statistics for both 
coefficients are significant. A value of 0.9251 for past variance implies that 
the shock of past volatility has a persistent effect on future volatility. The 
sum of the two coefficients is a succinct measure of the persistence of 
variance, and that its value is close to 1 implies that there is significant 
persistence in volatility. The unconditional variance is 0.0006414, which is 
equivalent to an annualized variance of 10.14 percent. 
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Table 2: Results of models estimated 

 GARCH 
(1,1) 

EGARCH 
(1,2) 

GJR (1,2) TARCH (1,2) TARCH 
variant (1,1) 

α0 0.0000117* 
(3.27e-06) 

0.1267491* 
(0.0430031) 

0.0000153* 
(4.16e-06) 

0.0005391* 
(0.0001609) 

0.0004697* 
(0.0001362) 

α1 0.0566712* 
(0.0065014) 

0.1616697* 
(0.0166975) 

0.1085503* 
(0.0125366) 

–0.0770229* 
(0.0119319) 

0.073906* 
(0.0066358) 

β1 0.9250869* 
(0.0102548) 

0.2922021* 
(0.0799058) 

0.1752578 
(0.0863492) 

0.2391775* 
(0.0961673) 

0.9241005* 
(0.0092274) 

β2 - 0.6903359* 
(0.0796525) 

0.7222816* 
(0.0857648) 

0.673488* 
(0.0951695) 

- 

γ1 - –0.0687259* 
(0.0113834) 

–0.0634249* 
(0.0148894) 

0.1230721* 
(0.0113155) 

- 

Notes: * = significant at 5 percent. Standard errors are given in parentheses.  

For GARCH-M (1,1) model α0 = 0.0000132*(3.48e-06), α10.0608757*(0.0066205), β1 
= 0.9185359*(0.0107267), and β2= –1.59738 (1.546592). 

Source: Author’s calculations. 

Next, we predict and test the standardized residuals of the 
GARCH (1,1) model.5 Plotting autocorrelation and partial autocorrelation 
functions for both standardized residuals and squared standardized 
residuals, and testing them using the q statistic reveals that the errors are 
white noise (Figure A6 in the Appendix). This means that we do not need 
higher-order GARCH models and that the GARCH (1,1) model is able to 
appropriately capture the GARCH effects. Further, the ARCH-LM test 
yields a p value of 0.2875, which means that the null of homoscedasticity 
is not rejected. We can therefore conclude that the GARCH (1,1) model is 
a parsimonious model and there are no remaining ARCH effects that 
need to be modeled by higher-order GARCH models.6 

Following this, we test for the presence of asymmetric effects. The 
sign bias test yields the following results: 

errorStt ++= −
−1

2 0759758.09057469.0ε̂  

(16.90)  (2.64) 

                                                 
5 Standardized residuals are defined as 𝑆𝑡 = ℰ̂𝑡/ℎ�𝑡. 
6 A GARCH-in-mean model was also estimated but the coefficients of the mean terms were 
insignificant, and hence the model was dropped. 
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A positive and significant coefficient indicates the presence of 
leverage effects, implying that positive and negative shocks do have a 
different effect on the conditional variance. Estimating the negative sign 
bias tests yields the following results: 

errorS ttt +−= −
−
− 11

2 ˆ1007951.09629348.0ˆ εε  

(21.42)  (1.66) 

A negative but insignificant coefficient implies that the effect of a 
negative shock on the variance does not depend on the size of that shock. 
Finally, the positive sign bias test yields 

errorS ttt +−= −
+
− 11

2 ˆ0718445.0029794.1ˆ εε  

(22.46)  (1.06) 

Insignificant coefficients on both the negative and positive sign 
bias test but a significant coefficient on the sign bias test implies that there 
are sign effects but no size effects. Positive and negative shocks do have a 
different effect on the conditional variance but their effect on the variance 
does not depend on the size of the shocks. 

Since the sign bias test indicates the presence of asymmetric 
effects, we proceed to estimate models from the ARCH family that do 
take into account asymmetries. As in the case of the GARCH model, we 
test the standardized residuals of these models in the same fashion using 
the q test to determine if they correctly capture the asymmetric and 
GARCH effects of the data. In each case, if the null hypothesis of errors 
being white noise is rejected, a higher-order model will be estimated until 
the errors tested turn out to be white noise. Table 3 presents the results 
for the p values of these tests. 

The first asymmetric model considered is the EGARCH (1,1) 
model, the residuals of which, when tested, are not white noise, implying 
that a higher-order model is needed. Estimating the EGARCH (1,2) model 
reveals that the negative and significant coefficient of the standardized 
residuals provides evidence for the asymmetric effect of negative shocks 
on the conditional variance. The coefficient is, however, smaller in 
absolute value than the symmetric parameter. The results imply that if 
the shock is positive, its effect on ln(ht) is (0.1616697-0.0687259). However, 
if the shock is of the same magnitude but negative, its effect is 
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(0.1616697+ 0.0687259), which is almost 2.5 times more than the effect of 
the positive shock. There is thus strong evidence that negative 
innovations are more destabilizing than positive ones. The effect is, 
however, smaller than the symmetric effect.  

Table 3: Testing for white noise using q statistic 

p value GARCH 
(1,1) 

EGARCH 
(1,2) 

GJR 
(1,2) 

TARCH 
(1,2) 

TARCH 
(1,1) 

For standardized 
residuals 

0.9732 0.8854 0.6718 0.6848 0.8633 

For squared 
standardized residuals 

0.4324 0.3509 0.5859 0.3521 0.2753 

Note: Null hypothesis: errors are white noise. 
Source: Author’s calculations. 

In the case of GARCH effects, the effect of the two-period lagged 
value of volatility is greater than the effect of the one-period lagged value, 
but the sum of both values indicates persistence. In the GJR (1,2) model, 
the negative and significant coefficient of the indicator variable implies 
the presence of asymmetric effects. For positive shocks, therefore, the 
effect on the conditional variance is (0.1085501-0.0634249), while for 
negative shocks it is greater (0.1085503). The effect of a negative shock is 
more than twice the effect of the positive, which is consistent with the 
EGARCH model. As in the case of the EGARCH model, the effect of a 
two-period lagged value of conditional variance is much higher than the 
effect of a one-period lagged value. 

Of the two variants of the TGARCH model, the first is the 
standard TGARCH model introduced by Zakoïan (1994). The significant 
coefficients of the error terms in the TARCH (1,2) model indicate the 
presence of asymmetric effects. In this case, the effect of a positive shock 
is given by (0.1230721-0.0770229), which is less than the effect of a 
negative shock (0.1230721). This is consistent with the results of the 
previous two asymmetric models. The sum of the coefficients of the 
GARCH terms indicates volatility persistence.  

The second variant of the TARCH model takes into account the effect 
of the size of the shock rather than its sign. This variant is closer to the 
GARCH model than other asymmetric models, and shows the persistent 
effect of past periods’ conditional variance. We use the information criteria 
approach to test the model’s goodness of fit (Table A5 in the Appendix). It is, 
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however, important to note that our main aim is to evaluate forecasts and, 
hence, forecast evaluation measures better serve this purpose.7 

Although all asymmetric extensions of the GARCH model use 
different techniques to capture volatility, they produce consistent results 
for crude oil futures traded at the NYMEX, and imply the presence of 
asymmetric effects. This is in contrast to the findings of Agnolucci (2009) 
and Sadorsky (2006), and may be because the time frame we have used is 
different from the latter two, which employ data only up to 2005 and so 
do not take into account the recent financial crisis. Moreover, Agnolucci’s 
(2009) asymmetric models do not consider higher-order GARCH effects, 
while previous research does not take into account some of the variants 
we have used here. 

Having estimated the models, our next step is to assess their 
forecasts. As discussed in Section 4, we use the models to make dynamic 
forecasts of volatility for the next 100 observations (Table 4). 

Table 4: Forecast evaluation 

Model RMSE MAE MAPE 

GARCH (1,1) 0.000004287 0.0014844 10,373.92 

EGARCH (1,2) 0.000004307 0.0014437 10,426.58 

GJR (1,2) 0.000004176 0.0013299 5,956.128 

TARCH (1,2) 0.000004410 0.0015198 1,1392.29 

TARCH (1,1) 0.000004240 0.0013956 9,538.237 

Source: Author’s calculations. 

All three evaluation statistics indicate that the GJR (1,2) model is 
best able to forecast volatility. The Diebold-Mariano test, which is applied 
to the GJR (1,2) and TARCH (1,1) models, ranks the latter as better able to 
forecast than the GJR (1,2) (see Diebold & Mariano, 1995). Of the three 
models, Zakoïan’s (1994) TARCH makes the least accurate forecasts. 
Based on the statistics in Table 4, the GJR (1,2) emerges as the best model 
with which to forecast the volatility of returns on oil futures. 

The selected model is further used to test if trading volume has 
any significant impact on the model itself and the forecasts made. On the 
lines of Liew and Brooks (1998) and Park, Switzer, and Bedrossian (1999), 
we add trading volume as an explanatory variable to the GJR (1,2) model 
                                                 
7 The results obtained from the two techniques may not necessarily be consistent with one another. 
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(Table A6 in the Appendix). The coefficient of the volume variable is 
insignificant, indicating that volume does not have any significant impact 
on estimation and forecasting through the GJR model. The same is the 
case when using the lagged value of volume (Table A7 in the Appendix). 
This result is consistent with the findings of Foster (1995) but updates the 
latter’s research by using data up to 2009, and concludes that volume 
does not reduce persistence in crude oil futures. 

Another measure of trading activity is open interest 
(Bessembinder & Seguin, 1993), which we use as a proxy and test using 
the GJR model. As with volume, its coefficient is insignificant, indicating 
that open interest does not impact the estimation of volatility modeling 
(Tables A8 and A9 in the Appendix). 

6. Conclusion 

This study has attempted to model the volatility of crude oil 
futures and assess the forecasting ability of the ARCH family of models. 
We have used historical volatility for modeling purposes through the 
ARCH family of models and made dynamic forecasts of future volatility. 
The study finds the presence of asymmetric effects in the light, sweet, 
crude oil futures traded on the NYMEX. Of the ARCH models, the GJR 
(1,2) is able to make the most accurate forecasts with the TARCH (1,1) as 
a close second. Therefore, when volatility forecasts for oil futures are used 
for hedging and pricing purposes, asymmetric rather than symmetric 
models are best used. Additionally, we find that trading volume and 
open interest are unable to reduce volatility persistence in these futures. 

The models’ forecasts can be extended for use in asset pricing 
models. Further improvements to the current study are also possible. 
First, intraday data and realized volatility could prove a better proxy for 
actual volatility than squared residuals. This would refine the process of 
forecast evaluation. Second, asymmetric power models and fractionally 
integrated models—also of the ARCH family—could be used to analyze 
volatility behavior. 
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Appendix 

Figure A1a: AC of prices 

 

Figure A1b: PAC of prices 

 
Source: Author’s calculations. 
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Table A1: Dickey-Fuller test for price 

Test statistic 1% critical value 5% critical value 10% critical value 

–1.548 –3.430 –2.860 –2.570 

Note: MacKinnon approximate p-value for Z(t) = 0.5081. 
Source: Author’s calculations. 

Table A2: Dickey-Fuller test for returns 

Test statistic 1% critical value 5% critical value 10% critical value 

–52.743 –3.430 –2.860 –2.570 

Note: MacKinnon approximate p-value for Z(t) = 0.0000. 
Source: Author’s calculations. 

Table A3: Phillips-Perron test for returns 

 Test statistic 1% critical 
value 

5% critical 
value 

10% critical 
value 

Z(rho) –2,588.516 –20.700 14.100 –11.300 

Z(t) –52.881 –3.430 –2.860 –2.570 

Note: MacKinnon approximate p-value for Z(t) = 0.0000. 
Source: Author’s calculations. 

Figure A2a: AC of squared returns 
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Figure A2b: PAC of squared returns 

 
Source: Author’s calculations. 

Figure A3a: AC of returns 
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Figure A3b: PAC of returns 

 
Source: Author’s calculations. 

Figure A4a: AC of residuals of mean equation 
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Figure A4b: PAC of residuals of mean equation 

 
Source: Author’s calculations. 

Figure A5a: AC of squared residuals of mean equation 
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Figure A5b: PAC of squared residuals of mean equation 

 
Source: Author’s calculations. 

Table A4: LM test for autoregressive conditional heteroscedasticity 

Lags (p) Chi2 Df Prob. > Chi2 

1 75.462 1 0.00 

Note: H0: no ARCH effects vs. H1: ARCH (p) disturbance. 
Source: Author’s calculations. 

Figure A6a: AC of squared residuals of GARCH (1,1) 
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Figure A6b: PAC of squared residuals of GARCH (1,1) 

 
Source: Author’s calculations. 

Table A5: Goodness-of-fit tests for models 

Model AIC BIC 

GARCH (1,1) –12761.56 –12678.62 

EGARCH (1,2) –12448.77 –12364.47 

GJR (1,2) –12775.49 –12680.70 

TARCH (1,2) –12802.24 –12707.45 

TARCH (1,1) –12443.82 –12361.32 

Source: Author’s calculations. 

Table A6: GJR model with volume variable 

Variable Coefficient t-statistic 

α0 0.0000154 3.69 

α1 0.1085968 8.66 

β1 0.1751763 2.03 

β2 0.7223081 8.42 

γ1 –0.0634411 –4.23 

Volume –7.30e-11 –0.01 

Source: Author’s calculations. 
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Table A7: GJR model with lagged volume variable 

Variable Coefficient t-statistic 

α0 0.0000155 3.70 

α1 0.1090224 8.64 

β1 0.1770838 2.03 

β2 0.7195726 8.30 

γ1 –0.0629534 –4.20 

Lagged volume  2.86e-10 0.06 

Source: Author’s calculations. 

Table A8: GJR model with open interest variable 

Variable Coefficient t-statistic 

α0 –2.37e-09 –0.53 

α1 0.1090175 8.68 

β1 0.1740498 2.03 

β2 0.7229511 8.50 

γ1 –0.0638242 –4.25 

Open interest 0.0000155 3.71 

Source: Author’s calculations. 

Table A9: GJR model with lagged open interest variable 

Variable Coefficient t-statistic 

α0 0.0000156 3.72 

α1 0.1093515 8.68 

β1 0.1762446 2.03 

β2 0.7198879 8.50 

γ1 –0.0632256 –4.23 

Lagged open interest –2.53e-09 –0.55 

Source: Author’s calculations. 
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