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Abstract 

The value of rainfall forecasts for rainfed rice production in the 
Philippines is estimated under the assumption that farmers adjust the 
quantities of fertilizer and labor if rainfall forecasts are available. Using a 
panel of 46 rice farmers in Tarlac, Philippines, a heteroskedastic 
production function with growing season rainfall (July to October) as one 
of the independent variables is estimated. The expected value of rainfall 
forecasts under the assumption of simultaneous adjustments in both 
fertilizer and labor was estimated to be slightly more than 1% of the net 
return from rice production. Taking the rainfed rice area in the 
Philippines of 1.2 million ha and a net return of $446/ha, the total value of 
the forecast was estimated to be $6.6 million per year. The expected value 
was also estimated under the assumption that, instead of forecasts of 
rainfall amounts for each year, forecasts made are for rainfall “above 
average”, “average”, or “below average”. The value of rainfall forecasts was 
found to be highest and ranged between 1.4%-4.5% of the net return when 
the forecast is ‘above average’. The Philippine Atmospheric, Geophysical 
and Astronomical Services Administration (PAGASA) could help farmers by 
investing more of its resource for the accurate prediction of ‘above 
average’ rainfall events. 

Introduction 

Agriculture is a risky enterprise with various kinds of risks involved 
in the production and marketing of agricultural products (Anderson and 
Dillon, 1992). Since risk arises due to the uncertainty about variables that 
affect production and profits, a reliable prediction of these uncertain 
variables will reduce risk. Input use and productivity when information 
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about uncertain variables is available are likely to be different in comparison 
with the situation when no such information is available. 

Although risk can arise from several sources, climatic uncertainty is 
the dominant source of risk, especially under rainfed conditions. Rainfall 
forecasts can partially help resolve uncertainties of rice production. In the 
Philippines, the Philippine Atmospheric, Geophysical and Astronomical 
Services Administration (PAGASA) provides seasonal rainfall forecasts that are 
classified as “above average”, “below average” or “average”. Although these 
forecasts are provided to help improve farmers’ decisions about rice 
production, it is uncertain how valuable these forecasts are to rice farmers 
in economic terms. The allocation of more resources to forecast rainfall is 
desirable if the additional value of the rainfall forecast is higher than the 
additional cost of providing such a forecast. Estimates of the value of rainfall 
forecasts can be a useful guide in determining the optimal resource 
allocation for generating forecasts. To aid in this task, this study attempts to 
estimate the potential value of rainfall forecasts to rice farmers of Tarlac, 
Central Luzon, Philippines. 

A Conceptual Model for Estimating the Value of Information 

The value of information can be derived using the standard model of 
agricultural risk analysis (Anderson et al, 1977). Let Φ  be the stochastic 
variable (i.e. state of nature) beyond the control of the decision-maker. If X 
is a vector of variable inputs that are manipulated by the decision-maker, 
the return g(Φ,X) earned depends on the state of nature and the vector of 
inputs. The function g(Φ,X) embodies input, output, and price 
relationships. In the absence of forecast information, decisions are based on 
the prior belief about the probability distribution of the stochastic variable. 
Let this prior probability density function be denoted by ƒ(Φ). A risk-

neutral decision-maker selects 
∗
Χ  to maximize the expected return ∫g(Φ,X) 

ƒ(Φ)dΦ from the production process. The optimal decision and profits 
based on prior information only are the prior optimal level of inputs and the 
prior optimal profits, respectively. On the other hand, if the economic agent 
has a forecast of the value of Φ (i.e. about the state of nature) before the 

selection of the input vector, the decision-maker will select 
∧
Χ  to maximize 

g(Φ,X) for each Φ . Let the maximized value of the profit be represented by 

g(Φ, ). The expected value of information “V” for risk-neutral farmers is 
the difference between expected profit derived with and without the 
information and is obtained as: 

∧
Χ
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where, V stands for the value of information to risk-neutral farmers and h 
(Φ)is the probability density of uncertain event revised using the forecast 
information. 

Following the expected utility model of decision-making under risk, 
risk-averse farmers are assumed to maximize the expected utility of profit 
(Anderson et al, 1977). Analogous to the model above for risk-neutral 
farmers, expected utility is estimated ‘with’ and ‘without’ information and 
the difference in the expected utility can be regarded as an indicator of the 
expected value (in utility terms) of rainfall predictor to risk-averse farmers. 
As the differences in utility that are ordinal in scale are meaningless, we 
have used the method followed by Byerlee and Anderson (1982) to obtain 
the value of information in money terms. 

(2) ( )[ ] ( )[ ] 0ˆ =Ε−−Ε ΠΠ &UVU  

where, ( )[ ]ΠΕ &U  is the expected utility of the prior optimal act and 

( )[ ]V−UΕ Π̂  is the expected utility of the optimal act derived using the 

prediction that costs $V to acquire. 

To implement model (1), it is essential to quantify the effect of 
inputs (X) and stochastic variables (Φ) on agricultural output. Such a 
relationship can be quantified using a production function. To implement 
model (2), the utility function that relates the level of profit to utility is also 
needed. A convenient form of the utility function is the constant partial 
risk-averse function (CPRA). It is specified as.  

(3) ( ) ( )
( )S

SU
−

∏−=∏
1

1  

where, ‘S’ is the risk aversion coefficient. This form of utility function has 
been widely used in applied research (Sillers, 1980; Smith and Umali, 1985; 
Rosegrant and Roumasset, 1985). 

Description of the Study Area 

Socio-economic monitoring of the rice production practices of 46 
farmers from the municipality of Victoria, Tarlac, Philippines was initiated in 



Abedullah and Sushil Pandey 72 

1990. Rice is grown in the rainy season with most of the land being left 
fallow in the dry season. The area has good market access and is well-linked 
with the town economy of Tarlac. Farmers are engaged in various off-farm 
and non-farm activities during the dry season to supplement their incomes. 
The means and the coefficients of variation (CV) of output and input 
variables are reported in Table-1. Based on the long-term weather record 
(1976-1995), the mean annual rainfall in Victoria is 1,649 mm. The 
variation in rainfall during the rice-growing season (July-October) is shown 
in Figure 1. 

Plot level data from the sample of 46 farmers were collected for the 
period 1990-95. All inputs and outputs were recorded in a survey 
questionnaire, which was administered every year to the same group of 
farmers. Unbroken panel data for 420 plots for each of the six years were 
utilized for estimating the production function. The only source of 
uncertainty considered was rainfall which was specified in the model as the 
total rainfall during the rice-growing season (July-October). The rainfall 
values are the same for all plots in a given year but differ from year to year. 
For biological reasons, it would have been more appropriate to specify 
rainfall as weekly or monthly total as compared to the seasonal total. 
However, we used the seasonal total, as a reliable estimation of the 
production responses for weekly or monthly rainfall using production data 
for only six years would have been constrained by the limited degrees of 
freedom. 

Production Function Estimation  

When production functions are estimated using a combination of 
cross-section and time-series data, heteroskedasticity may lead to 
asymptotically inefficient parameter estimates (Just and Pope, 1978). The 
Breusch-Pagan test rejected the null hypothesis of homoskedasticity at the 
5% level. To correct for heteroskedasticity, a multistage production function 
estimation technique suggested by Antle (1983) was used. A quadratic 
production function as specified in equation (4) was used. 

(4)  +++++++= ΖΖΧΧΧΧΥ 2
76

2
2524

2
13121 ααααααα

νααα +++ ΖΧΖΧΧΧ 21019218  

where, Y, X1, X2, and Z represent yield, total labor, fertilizer (total of N, 
P, and K), and total rainfall during the rice production period (from July to 
October), respectively. The stochastic error term is represented by ν. The 
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per hectare input use (labor, seed, herbicide, pesticide and elemental 
nutrients fertilizer (i.e. the sum of N, P, and K) and output with descriptive 
statistics is given in Table-1. 

The parameter estimates using Antles’ method are presented in 
Table-2. The coefficients of labor, labor2, fertilizer, fertilizer2, rainfall and 
rainfall2 all have the expected signs. The joint effects of rain and labor, and 
rain and fertilizer are positive and significant. The interaction term between 
fertilizer and labor is negative, indicating that these two inputs have a 
substitute relationship in rice production. 

Procedure for Estimating the Value of Rainfall Forecast 

In valuing the forecasts, a prior probability distribution of rainfall is 
required.  We assumed farmers’ prior probability of rainfall to be equivalent 
to the historical distribution of total rainfall during the rice production 
period. The probability distribution was estimated by applying the sparse 
data rule (Anderson et al, 1977) to the historical rainfall for the period 
1977-95. For a given value of the decision variable, profits were generated 
for each year by substituting the rainfall for that particular year into the 
production function. The expected profit was then calculated by using the 
corresponding rainfall probability weights. This process was repeated for all 
possible values of the decision variable and the value of the decision variable 
that generated the maximum expected profit was taken as the prior optimal 
decision. For risk-averse farmers, the prior maximal expected utility was 
similarly calculated by substituting the profit for each decision into equation 
(3) and using the corresponding probability weights. Siller (1980) concluded 
that 78% of rice farmers in Nueva Ecija, Philippines lie in the two 
intermediate categories of risk aversion. The S=0.8 is the common end point 
of these two categories. The value of risk aversion coefficient used in this 
study was 0.8. 

The rainfall forecast for each year was generated by random 
sampling from the discrete probability distribution of the historical rainfall 
data. Assuming that the prediction is perfect, optimal profit for this 
forecast was then obtained using the estimated production function. As 
prediction is assumed to be perfect, the probability distribution of the 
forecast is also the historical probability distribution of rainfall. Using the 
historical distribution, the expected profit when a perfect predictor of 
rainfall is available was then calculated. The difference between this 
expected profit and the expected profit of the prior optimal act is the 
expected value of the perfect predictor of rainfall. A similar procedure was 
used for the risk-averse case and equation (2) was utilized to obtain the 
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value of a perfect predictor to a risk-averse farmer. Estimation of the value 
of the perfect predictor is convenient as it avoids the need to explicitly 
obtain the likelihood function, which is an indicator of the accuracy of the 
predictor. Since no rainfall predictor can be perfect, the estimated value 
of the predictor can be considered as the upper limit of the value of 
rainfall forecast. 

As rainfall forecasts in the Philippines are provided as ‘average’, 
‘below average’, or ‘above average’, we also estimated the value of these 
forecasts. The 19-year historical July-October total rainfall fluctuated 
between 700-1650 mm (IRRI, Various Issues). We divided this total range of 
rainfall into three categories, below average (between 700 and 1000 mm of 
rainfall), average (between 1050 and 1300 mm of rainfall), and above 
average (between 1350 and 1650 mm of rainfall). To calculate the value of 
the perfect predictor, predicted rainfall values were limited within the range 
defined by these prediction categories. The prior optimal expected profit 
was obtained as before. The posterior expected profit was estimated by 
using the optimal profits for each perfect prediction (randomly selected, 
within the particular rainfall category) and the corresponding conditional 
probabilities. The difference between these two expected profits is the value 
of a particular category of forecast for a risk-neutral farmer. A similar 
procedure was used for the risk-averse case. 

Labor and fertilizer are the two decision variables considered. 
Farmers may adjust either or both of them from their prior optimal values if 
rainfall forecasts are available. We estimated the value of rainfall forecast 
under the assumptions that (a) only labor is adjusted to its posterior optimal 
value while the fertilizer is fixed at its sample average, (b) only fertilizer is 
adjusted to the posterior optimal value while labor is kept fixed at its 
sample average, and (c) both labor and fertilizer are adjusted simultaneously 
to their posterior optimal values. 

Value of Rainfall Forecasts 

The estimated values of a perfect rainfall predictor for risk-neutral 
and risk-averse farmers are presented in Table-3. The expected value of a 
rainfall forecast, if farmers are assumed to adjust fertilizer application when 
rainfall predictions are available, are $1.92 and $2/ha for risk-neutral and 
risk-averse farmers, respectively. These values account for 0.43% and 0.46% 
of the net return from rice production in the study area. The expected 
values of rainfall forecasts under the assumption that only labor is adjusted 
are $4.08 and $4.29/ha for risk-neutral and risk-averse farmers, respectively. 
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These comprise 0.92% and 0.96%, respectively, of the net return from rice 
production. 

The expected values of a perfect predictor of rainfall (under the 
assumption that farmers adjust fertilizer and labor simultaneously) for risk-
neutral and risk-averse farmers are $5.50 and $5.79/ha, respectively. In 
terms of percentage of the net return these values are 1.23% and 1.29%, 
respectively. The effect of risk aversion on the value of rainfall forecast was 
found to be minimal. 

The cost of acquiring information was not included in the above 
calculation, implying that the results indicate the expected gross benefits of 
the forecast. Net benefits depend on the cost of obtaining and using 
information. Gross benefits, as estimated here, are useful to indicate the 
maximum amount a farmer would be willing to pay to obtain the forecast. 

The expected values of the forecast under the assumption that the 
forecasts are ‘below average’ (between 700 and 1000 mm of rainfall), 
‘average’ (between 1050 and 1300 mm of rainfall) or ‘above average’ 
(between 1350 and 1650 mm of rainfall) were also estimated (Table-4). In 
the case of simultaneous adjustment of fertilizer and labor, values vary 
from $1.58 to $20/ha depending on the type of the forecast and the 
assumption about the risk attitude of farmers. In terms of percentage of 
net return, these values lie in the range of 0.35-4.52%. The ‘above 
average’ forecasts are found to be more valuable to farmers than ‘below 
average’ and ‘average’ forecasts. The PAGASA could hence help farmers 
more by investing more of its resource for the accurate prediction of 
‘above average’ rainfall events. 

The estimates of the value of rainfall forecasts obtained here are 
only a small fraction of the net return. In rainfed agriculture where 
rainfall is the major source of uncertainty, such a low value may appear to 
be somewhat surprising. This may partly be the result of the model 
specification in which rainfall is included as the seasonal total and the only 
two decision variables considered are labor and fertilizer application. 
Nevertheless, estimates derived here are comparable to those obtained for 
other countries. Mejelde et al, (1988) reported the value of rainfall 
forecasts varying from 5% to 13% of the net return in corn production in 
Illinois. Pannell (1994) estimated the value of information from herbicide 
decision making in wheat production in Australia to be between 0-15% of 
the gross margin from the crop. Marshall et al, (1996) estimated the value 
of seasonal forecasts for dryland wheat production in Australia to be 
between 0-6% of the net return. Even though the value of the forecast 
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expressed as a percentage of net return may be small, the total absolute 
value can be quite large depending on the size of the area covered by the 
forecast. Taking the rainfed rice area in the Philippines of 1.2 million 
hectare and a net return of $446/ha, the total benefit to rainfed rice 
farmers would be $6.6 million per year even if the value of the forecast is 
only 1.23% of the net return. 

Concluding Remarks 

Overall, the expected value of a hypothetical perfect predictor of 
rainfall is found to be between $2/ha-$6/ha for moderate risk-averse farmers, 
which is little higher than 1% of the net return earned by farmers from rice 
production in the study area. This is an upper bound estimate of the value 
of a rainfall predictor, since the prediction accuracy of a realistic predictor is 
likely to be less than 100%. As rainfall prediction in the Philippines is 
provided cost free, this is also an estimate of its net value to farmers. The 
effect of risk aversion on the value of the forecast was found to be minimal. 
Our results also indicate that the value of information is asymmetrical, with 
the ‘above average’ forecast being four times more valuable than the 
‘average’ forecast and about two times more valuable than the ‘below 
average’ forecast. An important implication of this finding is that additional 
efforts by PAGASA to correctly predict the ‘above average’ rainfall events 
may be justifiable. Overall, the average value of a perfect predictor of 
seasonal rainfall to the rainfed rice farmers of the Philippines was estimated 
to be $6.6 million per year. 

The value of the forecast depends critically on the quality and the 
timeliness of the forecast (Mjelde et al., 1988). Forecasts are valuable only if 
they are received before inputs have been applied. We did not investigate 
the timeliness issue due to limitations of data for estimating production 
functions that adequately capture temporal interactions between managed 
inputs and rainfall. Similarly, we have considered rainfall as the only source 
of uncertainty on the assumption that rainfall variability is the major source 
of risk in rainfed rice production. Further expansion of the approach used to 
include these refinements is suggested. 
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Table-1: Average per hectare Input and Output Use in Victoria, Tarlac, 
Philippines. 

Input/output Units Average Standard deviation 

Total labora (days/ha) 55 15 

Seed (kg/ha) 110 47 

Fertilizer (NPK) (kg/ha) 94 42 

Herbicide (kg a.i./ha) 0.14 0.21 

Pesticide (kg a.i./ha) 0.09 0.14 

Yield (tons/ha) 3.35 1.07 

a. Includes family labor and hired labor. 

Table-2: Quadratic Production Function Estimates with Antle’s 
Technique in Victoria, Tarlac, Philippinesa. 

 

Explanatory variables Coefficients Standard errors 

Intercept -72.9E-03ns 134.1E-02 

Labor 30.2E-03* 18.2E-03 

Fertilizer 18.2E-03*** 7.6E-03 

Rain 1.4E-03ns 1.6E-03 

Labor2 -0.2E-03*** 9.1E-05 

Fertilizer2 -3.8E-05*** 1.7E-05 

Rain2 -1.1E-06** 5.6E-07 

Labor*Fertilizer -0.2E-03*** 7.1E-05 

Labor*Rain 1.7E-05* 1E-05 

Fertilizer*Rain 5.1E-06*** 4.4E-07 

R2 0.25  

n 420  

*** = significant at 1%,   **  = significant at 5%,   * = significant at 10%,    ns  
= not significant 
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Table-3: Total expected value of forecast in ($/ha) under different 
input adjustment in Victoria, Tarlac, Philippines 

Forecast and adjustment of 
inputs 

Value of rainfall forecasta 
Risk-neutral Risk-averse 

Fertilizer adjustment only 1.92 
(0.43) 

2.04 
(0.45) 

Labor adjustment only 4.08 
(0.92) 

4.29 
(0.96) 

Simultaneous adjustment  
of fertilizer and labor 

5.50 
(1.23) 

5.79 
(1.29) 

a Value in parenthesis represents the percentage of net return. 

Table-4: The expected value of different rainfall forecasts for rice 
production period in ($/ha) under different input adjustment in 

Victoria, Tarlac, Philippines. 

Forecast and adjustment of inputs Value of rainfall forecasta 
Risk-neutral Risk-averse 

Below average (700-1000) mm.   
Fertilizer adjustment only 1.42 

(0.32) 
1.50 
(0.34) 

Labor adjustment only 2.71 
(0.61) 

2.92 
(0.65) 

Simultaneous adjustment of 
fertilizer and labor 

3.42 
(0.77) 

3.67 
(0.82) 

Average (1050-1300) mm.   
Fertilizer adjustment only 0.50 

(0.11) 
0.58 
(0.13) 

Labor adjustment only 1.25 
(0.28) 

1.33 
(0.30) 

Simultaneous adjustment of 
fertilizer and labor 

1.58 
(0.35) 

1.71 
(0.38) 

Above average (1350-1650) mm.   
Fertilizer adjustment only 6.17 

(1.38) 
6.50 
(1.46) 

Labor adjustment only 13.75 
(3.08) 

14.17 
(3.18) 

Simultaneous adjustment 
of fertilizer and labor 

19.33 
(4.33) 

20.17 
(4.52) 

a  Value in parenthesis represents the percentage of net return. 
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Figure 1. Average monthly rainfall over 1977-95, Victoria, Tarlac, 
Philippines. 
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