- Shabbir, M., Chand, S., Iqbal, F., & Kisi, O. (2025). Novel Hybrid Approach for River Inflow Modeling: Case Study of the Indus River Basin, Pakistan. Journal of Hydrologic Engineering, 30(3), 04025006. https://doi.org/10.1061/JHYEFF.HEENG-6368
- Shabbir, M., Chand, S., & Dar, I. S. (2025). Bagging-based heteroscedasticity-adjusted ridge estimators in the linear regression model. Kuwait Journal of Science, 52(3), 100412. https://doi.org/10.1016/j.kjs.2025.100412
- Chand, S., & Shabbir, M. (2025). A new robust ridge estimator for linear regression model with non normal, heteroscedastic and autocorrelated errors. Communications in Statistics-Theory and Methods, 1-17. https://doi.org/10.1080/03610926.2025.2479640
- Shah, S. A. A., Zaman, Q., Wasim, D., Allohibi, J., Alharbi, A. A., & Shabbir, M. (2025). Optimal model for predicting highest runs chase outcomes in T-20 international cricket using modern classification algorithms. Alexandria Engineering Journal, 114, 588-598. https://doi.org/10.1016/j.aej.2024.11.113
- Wasim, D., Suhail, M., Khan, S. A., Shabbir, M., Awwad, F. A., Ismail, E. A., ... & Ali, A. (2025). Quantile-based robust Kibria–Lukman estimator for linear regression model to combat multicollinearity and outliers: Real life applications using T20 cricket sports and anthropometric data. Kuwait Journal of Science, 52(1), 100336. https://doi.org/10.1016/j.kjs.2024.100336.
- Shabbir, M., Chand, S., & Dar, I. S. (2025). Heteroscedastic-adjusted standard error based estimation of ridge parameter in the linear regression model. Communications in Statistics-Theory and Methods, 1-15. https://doi.org/10.1080/03610926.2025.2474633.
- Shabbir, M., Chand, S., & Iqbal, F. (2024). A novel hybrid approach based on outlier and error correction methods to predict river discharge using meteorological variables. Environmental and Ecological Statistics, 1-28. https://doi.org/10.1007/s10651-024-00628-4
- Zaman, Q., Wasim, D., Nawaz, S., & Shabbir, M. (2025). Modified robust ridge M-estimators to improve linear regression performance under multicollinearity and outliers. Journal of Statistical Computation and Simulation, 1-23. https://doi.org/10.1080/00949655.2025.2573859
- Wasim, D., Khan, S. A., Suhail, M., & Shabbir, M. (2025). New penalized M-estimators in robust ridge regression: real life applications using sports and tobacco data. Communications in Statistics-Simulation and Computation, 54(6), 1746-1765. https://doi.org/10.1080/03610918.2023.2293648
- Shabbir, M. (2025). A New Approach for the Estimation of ridge parameter in linear regression model with heteroscedastic errors. (Conference Paper)
- Dar, I. S., Chand, S., & Shabbir, M. (2025). An improved ridge-type estimator leveraging weighted least squares and horn’s scaling for heteroscedastic regression. Communications in Statistics-Theory and Methods, 1-20. https://doi.org/10.1080/03610926.2025.2535399.
- Wasim, D., Suhail, M., Albalawi, O., & Shabbir, M. (2024). Weighted penalized m-estimators in robust ridge regression: an application to gasoline consumption data. Journal of Statistical Computation and Simulation, 1-30. https://doi.org/10.1080/00949655.2024.2386391.
- Wasim, D., Khan, S.A., Bashir, A., & Shabbir, M. (2024). Statistical Study of Impact of Services on Balance of Payment in Pakistan. International Journal of Contemporary Issues in Social Sciences, 3(2), 2050-2057. https://ijciss.org/index.php/ijciss/article/view/920/1014
- Shabbir, M., Chand, S., & Iqbal, F. (2024). A novel hybrid framework to model the relationship of daily river discharge with meteorological variables. Meteorology Hydrology and Water Management. https://doi.org/10.26491/mhwm/187899
- Shabbir, M., Chand, S., Iqbal, F., & Kisi, O. (2024). Hybrid Approach for Streamflow Prediction: LASSO-Hampel Filter Integration with Support Vector Machines, Artificial Neural Networks, and Autoregressive Distributed Lag Models. Water Resources Management, 1-18. https://doi.org/10.1007/s11269-024-03858-0
- Shabbir, M., Chand, S., & Iqbal, F. (2024). Novel hybrid and weighted ensemble models to predict river discharge series with outliers. Kuwait Journal of Science, 51(2), 100188. https://doi.org/10.1016/j.kjs.2024.100188
- Wasim, D., Khan, S.A., Suhail, M., Shabbir, M. (2023). New Penalized M-estimators in robust ridge regression: Real life applications using Sports and Tobacco Data Communications in Statistics-Simulation and Computation. 1-20. https://doi.org/10.1080/03610918.2023.2293648
- Shabbir, M., Chand, S., & Iqbal, F. (2023). A new ridge estimator for linear regression model with some challenging behavior of error term. Communications in Statistics-Simulation and Computation, 1-11. https://doi.org/10.1080/03610918.2023.2186874.
- Shabbir, M., Chand, S., & Iqbal, F. (2023). Prediction of river inflow of the major tributaries of Indus river basin using hybrids of EEMD and LMD methods. Arabian Journal of Geosciences, 16(4), 257. https://doi.org/10.1007/s12517-023-11351-y.
- Shabbir, M., Chand, S., & Iqbal, F. (2023). A new hybrid model to predict streamflow. Published in the 6th International Researchers, Statisticians and Young Statisticians Congress (IRSYSC2022) Proceedings. Suleyman Demirel University, Isparta, Türkiye held on 03-06 November 2022. http://irsysc2022.com/files/IRSYSC2022_Proceeding_Book_v2.pdf
- Dar I.S., Chand, S., Shabbir, M., and Kibria B.M.G. (2022). Conditional-Index based New Ridge Regression Estimator for Linear Regression Model with Multicollinearity. Kuwait Journal of Science.1-12. https://doi.org/10.1016/j.kjs.2023.02.013.
- Shabbir, M., Chand, S., and Iqbal, F. (2022). Bagging-based ridge estimators for a linear regression model with non-normal and heteroscedastic errors. Communications in Statistics-Simulation and Computation, 1-15. https://doi.org/10.1080/03610918.2022.2109675.
- Shabbir, M., Chand, S., and Iqbal, F. (2022). A Novel Hybrid Method for River Discharge Prediction. Water Resources Management, 36(1), 253-272. https://doi.org/10.1007/s11269-01-03026-8.
- Riaz, A., Akhter, A.S., and Shabbir, M. (2019). INVERSE EXPONENTIAL LOMAX DISTRIBUTION: PROPERTIES AND APPLICATION. In 15th Islamic Countries Conference on Statistical Sciences (ICCS-15) (p. 157).
- Shabbir, M., Riaz, A., and Gull, H. (2018). Rayleigh Lomax Distribution. The Journal of Middle East and North Africa Sciences, 4(12), 1-4.
- Shabbir, M., Noor, N., Riaz, A., and Gull, H. (2017). The New Weibull Lomax Distribution. Imperial Journal of Interdisciplinary Research, 3(1), 1881-1885.
