Peer-reviewed full-length research articles in impact factor Journals enlisted in JCR (Web of Science)
1. Chaudhry, A. Naz, R., (2025). The closed-form solutions for a model with technology diffusion via Lie symmetries, Discrete and Continuous Dynamical Systems -S, 18(4) 1036-1053.
Doi: 10.3934/dcdss.2024133
2. Naz, R. Johnpillai, A, Mahomed, F. M. Omame, A. Closed-form solutions for a reaction-diffusion SIR model with different diffusion coefficients, Discrete and Continuous Dynamical Systems – S, 18(4), 870-881.
DOI: 10.3934/dcdss.2024103
3.Naz, R. Torrisi, M. Imran, A. , (2025). Lie Symmetries and Solutions for a Reaction–Diffusion–Advection SIS Model with Demographic Effects, 17(1), 3.
DOI: https://doi.org/10.3390/sym17010003
4. Naz, R. Wang, G. Irum, S., (2025). The closed-form solutions of a diffusive Susceptible-Infectious-Susceptible epidemic model, Journal of Applied Analysis and Computation, 15 (1), 574-586
DOI: 10.11948/20240175
5. Naz, R. Torrisi, M. (2024). The Closed-Form Solutions of a SIS Epidemic Reaction-Diffusion Model with Advection in a One-Dimensional Space Domain, SYMMETRY, 16(8), 948.
DOI: https://doi.org/10.3390/sym16080948
6. Naz, R. Johnpillai, A, Mahomed, F. M. (2024). The exact solutions of a diffusive SIR model via symmetry groups, Journal of Mathematics, Volume 2024, Article ID 4598831, 14 pages.
DOI: https://doi.org/10.1155/2024/4598831
7. Naz, R,. Torrisi, M., (2023). The first integrals and closed-form solutions of a Susceptible-Exposed-Infectious epidemic model, Mathematical Models in the Applied Sciences, 46 (4), 4352-4362.
DOI: https://doi.org/10.1002/mma.8761
8.Naz, R., & Torrisi, M. (2023). Symmetry methods for a hyperbolic model for a class of populations. Applied Mathematics and Computation, 439, 127640.
DOI: https://doi.org/10.1016/j.amc.2022.127640
9. Naz, R., & Torrisi, M. (2022). The Transmission Dynamics of a Compartmental Epidemic Model for COVID-19 with the Asymptomatic Population via Closed-Form Solutions. Vaccines, 10(12), 2162.
DOI: https://doi.org/10.3390/vaccines10122162
10. Naz, R. (2022). A current-value Hamiltonian approach to discrete-time optimal control problems in economic growth theory. Journal of Difference Equations and Applications, 28(1), 109-119.
DOI: https://doi.org/10.1080/10236198.2021.2023137
11. Naz, R., & Al?Raeei, M. (2021). Analysis of transmission dynamics of COVID?19 via closed?form solutions of a susceptible?infectious?quarantined?diseased model with a quarantine?adjusted incidence function. Mathematical Methods in the Applied Sciences, 44(14), 11196-11210.
DOI: https://doi.org/10.1002/mma.7481
12. Cheviakov, A., Lee, C., & Naz, R. (2021). Radial waves in fiber-reinforced axially symmetric hyperelastic media. Communications in Nonlinear Science and Numerical Simulation, 95, 105649.
DOI: 10.1016/j.cnsns.2020.105649
13. Naz, R., & Mahomed, F. M. (2021). Hamiltonian symmetry classification, integrals, and exact solutions of a generalized Ermakov system. Mathematical Methods in the Applied Sciences, 44(6), 4467-4478.
DOI: 10.1002/mma.7044
14. Naz, R., & Naeem, I. (2020). Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries. Discrete & Continuous Dynamical Systems-S, 13(10), 2841-2851.
DOI: 10.3934/dcdss.2020122
15. Naz, R. (2020). On sufficiency issues, first integrals and exact solutions of Uzawa-Lucas model with unskilled labor. Discrete & Continuous Dynamical Systems-S, 13(10), 2813-2828.
DOI: 10.3934/dcdss.2020170
16. Naz, R., Mahomed, F. M., & Chaudhry, A. (2020). First integrals of Hamiltonian systems: The inverse problem. Discrete & Continuous Dynamical Systems-S, 13(10), 2829-2840.
DOI: 10.3934/dcdss.2020121
17. Naz, R., & Mahomed, F. M. (2020). Approximate Hamiltonian symmetries and related first integrals. International Journal of Non-Linear Mechanics, 125, art. no. 103547.
DOI: 10.1016/j.ijnonlinmec.2020.103547
18. Naz, R. (2020). Noether-type Hamiltonian symmetry classification, first integrals and exact solutions of two classes of the generalized Ermakov’s systems. The European Physical Journal Plus, 135(8), 641.
DOI: 10.1140/epjp/s13360-020-00631-1
19. Naz, R. (2020). The closed-form solutions for finance-extended Lucas–Uzawa model. Computational and Applied Mathematics, 39(2), 1-29, art. no. 101
DOI: 10.1007/s40314-020-1125-9
20. Naz, R., & Naeem, I. (2019). The approximate Noether symmetries and approximate first integrals for the approximate Hamiltonian systems. Nonlinear Dynamics, 96(4), 2225-2239.
DOI: 10.1007/s11071-019-04893-y
21. Naz, R. (2018). Characterization of approximate Partial Hamiltonian operators and related approximate first integrals. International Journal of Non-Linear Mechanics, 105, 158-164.
DOI: 10.1016/j.ijnonlinmec.2018.06.001
22. Naz, R., & Chaudhry, A. (2018). Closed-form solutions of Lucas–Uzawa model with externalities via partial Hamiltonian approach. Computational and Applied Mathematics, 37(4), 5146-5161.
DOI: 10.1007/s40314-018-0622-6
23. Naz, R., & Johnpillai, A. G. (2018). Exact solutions via invariant approach for Black?Scholes model with time?dependent parameters. Mathematical Methods in the Applied Sciences, 41(12), 4417-4427.
DOI: 10.1002/mma.4903
24. Naz, R., & Mahomed, F. M. (2018). Characterization of partial Hamiltonian operators and related first integrals. Discrete & Continuous Dynamical Systems-S, 11(4), 723-734
DOI: 10.3934/dcdss.2018045
25. Chaudhry, A., & Naz, R. (2018). Closed-form solutions for the Lucas-Uzawa growth model with logarithmic utility preferences via the partial Hamiltonian approach. Discrete & Continuous Dynamical Systems-S, 11(4), 643-654.
DOI: 10.3934/dcdss.2018039 26. Naz, R., & Naeem, I. (2018). The artificial Hamiltonian, first integrals, and closed-form solutions of dynamical systems for epidemics. Zeitschrift für Naturforschung A, 73(4), 323-330.
DOI: 10.1515/zna-2017-0399
27. Naz, R., & Cheviakov, A. F. (2017). Conservation laws and nonlocally related systems of two-dimensional boundary layer models. Zeitschrift für Naturforschung A, 72(11), 1031-1051.
DOI: 10.1515/zna-2017-0238
28. Naz, R., & Chaudhry, A. (2017). Comparison of closed-form solutions for the Lucas-Uzawa model via the partial Hamiltonian approach and the classical approach. Mathematical modelling and analysis, 22(4), 464-483.
DOI: 10.3846/13926292.2017.1323035
29. Chaudhry, A., Tanveer, H., & Naz, R. (2017). Unique and multiple equilibria in a macroeconomic model with environmental quality: An analysis of local stability. Economic Modelling, 63, 206-214.
DOI: 10.1016/j.econmod.2017.02.009
30. Naz, R. (2017). Potential systems and nonlocal conservation laws of Prandtl boundary layer equations on the surface of a sphere. Zeitschrift für Naturforschung A, 72(4), 351-357.
DOI: 10.1515/zna-2016-0386
31. Naz, R., & Naeem, I. (2017). Generalization of approximate partial Noether approach in phase space. Nonlinear Dynamics, 88(1), 735-748.
DOI: 10.1007/s11071-016-3273-4
32. Cheviakov, A. F., & Naz, R. (2017). A recursion formula for the construction of local conservation laws of differential equations. Journal of Mathematical Analysis and Applications, 448(1), 198-212.
DOI: 10.1016/j.jmaa.2016.10.042
33. Naz, R. (2016). The applications of the partial Hamiltonian approach to mechanics and other areas. International Journal of Non-linear mechanics, 86, 1-6.
DOI: 10.1016/j.ijnonlinmec.2016.07.009
34. Naz, R., Mahomed, K. S., & Naeem, I. (2016). First integrals and exact solutions of the SIRI and tuberculosis models. Mathematical Methods in the Applied Sciences, 39(15), 4654-4666.
DOI: 10.1002/mma.3903
35. Naz, R., Mahomed, F. M., & Chaudhry, A. (2016). A partial Lagrangian method for dynamical systems. Nonlinear dynamics, 84(3), 1783-1794.
DOI: 10.1007/s11071-016-2605-8
36. Naz, R., Chaudhry, A., & Mahomed, F. M. (2016). Closed-form solutions for the Lucas–Uzawa model of economic growth via the partial Hamiltonian approach. Communications in Nonlinear Science and Numerical Simulation, 30(1-3), 299-306.
DOI: 10.1016/j.cnsns.2015.06.033
37. Naeem, I., Naz, R., & Khan, M. D. (2015). Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems. Zeitschrift für Naturforschung A, 70(12), 1031-1037.
DOI: 10.1515/zna-2015-0072
38. Naz, R., & Mahomed, F. M. (2015). A complex Noether approach for variational partial differential equations. Communications in Nonlinear Science and Numerical Simulation, 27(1-3), 120-135.
DOI: 10.1016/j.cnsns.2015.03.002
39. Naz, R., & Mahomed, F. M. (2015). Dynamic euler-Bernoulli beam equation: classification and reductions. Mathematical Problems in Engineering, 2015. art. no. 520491, .
DOI: 10.1155/2015/520491
40. Naz, R., Naeem, I., & Mahomed, F. M. (2015). A partial lagrangian approach to mathematical models of epidemiology. Mathematical problems in Engineering, 2015. art. no. 602915, .
DOI: 10.1155/2015/602915
41. Naz, R., & Mahomed, F. M. (2014). Lie and Noether symmetries of systems of complex ordinary differential equations and their split systems. Pramana, 83(1), 9-20.
DOI: 10.1007/s12043-014-0762-1
42. Naz, R., Freire, I. L., & Naeem, I. (2014). Comparison of different approaches to construct first integrals for ordinary differential equations. In Abstract and applied analysis (Vol. 2014). art. no. 978636,
DOI: 10.1155/2014/978636
43. Naz, R., Mahomed, F. M., & Chaudhry, A. (2014). A partial Hamiltonian approach for current value Hamiltonian systems. Communications in Nonlinear Science and Numerical Simulation, 19(10), 3600-3610.
DOI: 10.1016/j.cnsns.2014.03.023
44. Naz, R., Ali, Z., & Naeem, I. (2013). Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem. In Abstract and Applied Analysis (Vol. 2013). art. no. 340564, .
DOI: 10.1155/2013/340564
45. Naz, R., Naeem, I., & Khan, M. (2013). Conservation laws of some physical models via symbolic package GeM. Mathematical Problems in Engineering, 2013, art. no. 897912, .
DOI: 10.1155/2013/897912
46. Naz, R., Khan, M. D., & Naeem, I. (2013). Conservation laws and exact solutions of a class of non linear regularized long wave equations via double reduction theory and Lie symmetries. Communications in Nonlinear Science and Numerical Simulation, 18(4), 826-834.
DOI: 10.1016/j.cnsns.2012.09.011
47. Naz, R., Khan, M. D., & Naeem, I. (2012). Nonclassical symmetry analysis of boundary layer equations. Journal of Applied Mathematics, 2012, art. no. 938604.
DOI: 10.1155/2012/938604
48. Naz, R. (2012). Conservation laws for some systems of nonlinear partial differential equations via multiplier approach. Journal of Applied Mathematics, 2012, art. no. 871253 .
DOI: 10.1155/2012/871253
49. Naz, R. (2012). Conservation laws for laminar axisymmetric jet flows with weak swirl. Applicable Analysis, 91(5), 1045-1052.
DOI: 10.1080/00036811.2011.575367
50. Naz, R. (2012). Conservation laws for some compacton equations using the multiplier approach. Applied Mathematics Letters, 25(3), 257-261.
DOI: 10.1016/j.aml.2011.08.019
51. Naz, R. (2011). Group-Invariant Solutions for Two-Dimensional Free, Wall, and Liquid Jets Having Finite Fluid Velocity at Orifice. Mathematical Problems in Engineering, 2011. art. no. 615612 .
DOI: 10.1155/2011/615612
52. Mahomed, F. M., & Naz, R. (2011). A note on the Lie symmetries of complex partial differential equations and their split real systems. Pramana, 77(3), 483-491.
DOI: 10.1007/s12043-011-0169-1
53. Naz, R. (2011). Approximate partial Noether operators and first integrals for cubically coupled nonlinear Duffing oscillators subject to a periodically driven force. Journal of Mathematical Analysis and Applications, 380(1), 289-298.
DOI: 10.1016/j.jmaa.2011.02.028
54. Naz, R., Naeem, I., & Mahomed, F. M. (2011). First integrals for two linearly coupled nonlinear Duffing oscillators. Mathematical Problems in Engineering, 2011, art. no. 831647 .
DOI: 10.1155/2011/831647
55. Naz, R., Mason, D. P., & Naeem, I. (2011). Group Invariant Solution for a Liquid Film on the Surface of a Sphere. Zeitschrift für Naturforschung A, 66(5), 272-280.
DOI: 10.1515/zna-2011-0502
56. Naz, R. (2010). Conservation laws for a complexly coupled KdV system, coupled Burgers’ system and Drinfeld–Sokolov–Wilson system via multiplier approach. Communications in Nonlinear Science and Numerical Simulation, 15(5), 1177-1182.
DOI: 10.1016/j.cnsns.2009.05.071
57. Naz, R., Mahomed, F. M., & Hayat, T. (2010). Conservation laws for third-order variant Boussinesq system. Applied Mathematics Letters, 23(8), 883-886.
DOI: 10.1016/j.aml.2010.04.003
58. Naz, R., Naeem, I., & Mahomed, F. M. (2010). Conservation laws and conserved quantities for laminar radial jets with swirl. Mathematical and Computational Applications, 15(4), 742-761.
DOI: 10.3390/mca15040742
59. Naz, R. (2010). Group invariant solution for a free jet on a hemi-spherical shell. Applied mathematics and computation, 215(9), 3265-3270.
DOI: 10.1016/j.amc.2009.10.013
60. Naz, R., Naeem, I., & Abelman, S. (2009). Conservation laws for Camassa–Holm equation, Dullin–Gottwald–Holm equation and generalized Dullin–Gottwald–Holm equation. Nonlinear Analysis: Real World Applications, 10(6), 3466-3471.
DOI: 10.1016/j.nonrwa.2008.09.028
61. Naz, R., Mahomed, F. M., & Mason, D. P. (2009). Conservation laws via the partial Lagrangian and group invariant solutions for radial and two-dimensional free jets. Nonlinear Analysis: Real World Applications, 10(6), 3457-3465.
DOI: 10.1016/j.nonrwa.2008.09.027
62. Naz, R., Mason, D. P., & Mahomed, F. M. (2009). Conservation laws and conserved quantities for laminar two-dimensional and radial jets. Nonlinear Analysis: Real World Applications, 10(5), 2641-2651.
DOI: 10.1016/j.nonrwa.2008.07.003
63. Naz, R., & Mason, D. P. (2009). Conservation Laws for Heated Laminar Radial Liquid and Free Jets. Journal of Nonlinear Mathematical Physics, 16(03), 299-309.
DOI: 10.1142/S1402925109000248
64. Naz, R., Mahomed, F. M., & Mason, D. P. (2008). Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics. Applied Mathematics and Computation, 205(1), 212-230.
DOI: 10.1016/j.amc.2008.06.042
65. Naz, R., Mahomed, F. M., & Mason, D. P. (2008). Symmetry solutions of a third-order ordinary differential equation which arises from Prandtl boundary layer equations. Journal of Nonlinear Mathematical Physics, 15(sup1), 179-191.
DOI: 10.2991/jnmp.2008.15.s1.16
66. Hayat, T., Naz, R., & Asghar, S. (2004). Hall effects on unsteady duct flow of a non-Newtonian fluid in a porous medium. Applied mathematics and computation, 157(1), 103-114.
DOI: 10.1016/j.amc.2003.08.069
Peer-reviewed full-length research articles published in Scopus indexed/other journals
67. Naz, R. Hereman, W (2025). Lie symmetries, closed-form solutions, and conservation laws of a constitutive equation modeling stress in elastic materials, Partial Differential Equations in Applied Mathematics, 13, 101054, pages 1-10.
Scopus indexed
DOI: https://doi.org/10.1016/j.padiff.2024.101054
68. Naz, R., Omame, A., Torrisi, M, (2024) Cost-Effectiveness Analysis of COVID-19 Vaccination: A review of some Vaccination Models, Partial Differential Equations in Applied Mathematics. Vol 11, 100842, pages 1-9.
DOI: https://doi.org/10.1016/j.padiff.2024.100842
Scopus indexed
69. Mahomed, F. M., Mahomed, K. S., Naz, R., & Momoniat, E. (2013). Invariant approaches to equations of finance. Mathematical and Computational Applications, 18(3), 244-250.
DOI: 10.3390/mca18030244
Scopus indexed
70. Naeem, I., & Naz, R. (2009). Wall jet on a hemi-spherical shell: conserved quantities and group invariant solution. International Journal of Nonlinear Science, 7(2), 149-158.
DOI: IJNS.2009.04.15/212
Editorial board Notes Published in impact factor Journals enlisted in JCR (Web of Science)
71. Naz, R., Torrisi, M., Freire, I. L., & Naeem, I. (2017). Qualitative and Quantitative Techniques for Differential Equations Arising in Mathematical Physics. Advances in Mathematical Physics, 2017.
DOI: 10.1155/2017/8592571
72. Naz, R., Freire, I. L., Naeem, I., & Torrisi, M. (2014, January). Mathematical methods and models in the natural to the life sciences. In Abstract and Applied Analysis (Vol. 2014), art. no. 706858.
DOI: 10.1155/2014/706858
Conference publications
73. Naz, R., & Mahomed, F. M. (2018). A Note on the Multiplier Approach for Derivation of Conservation Laws for Partial Differential Equations in the Complex Domain. In Symmetries, Differential Equations and Applications, 266, 125-136, Springer Proceedings in Mathematics and Statistics, 266, pp. 125-136.
DOI: 10.1007/978-3-030-01376-9_7 Scopus indexed
74. Naeem, I., Naz, R., & Mahomed, F. M. (2010). First integrals for systems via complex partial Lagrangians. Recent Advances in Bussiness administration, 20-25.
75. Naz, R., Mason, D. P., & Mahomed, F. (2008). Physical conserved quantities for the axisymmetric liquid, free and wall jets. International Journal of Aerospace and Mechanical Engineering, 2(7), 899-903.
76. Naeem, I., & Naz, R. (2008). Group Invariant Solutions for Radial Jet Having Finite Fluid Velocity at Orifice. International Journal of Aerospace and Mechanical Engineering, 2(7), 892-898.
